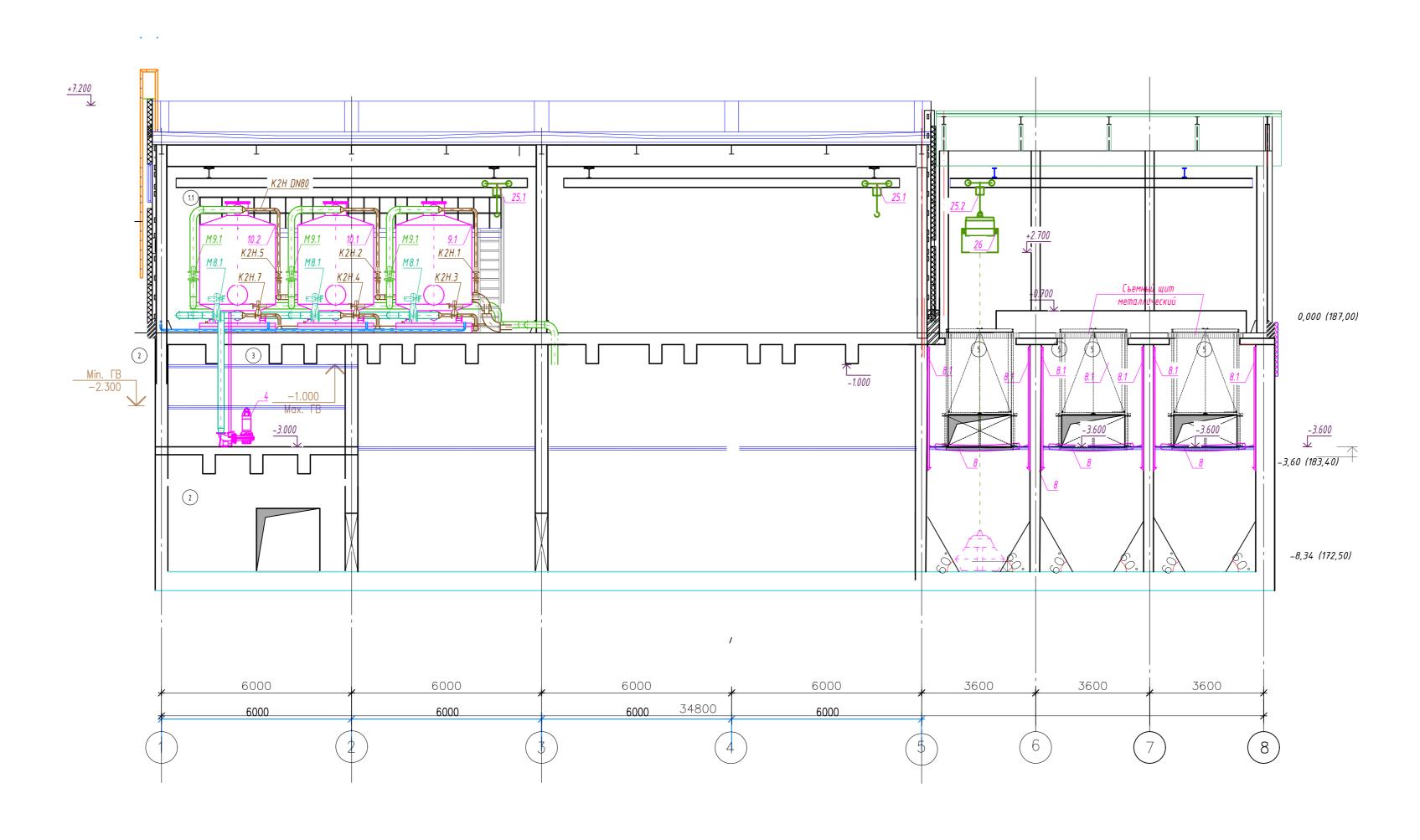


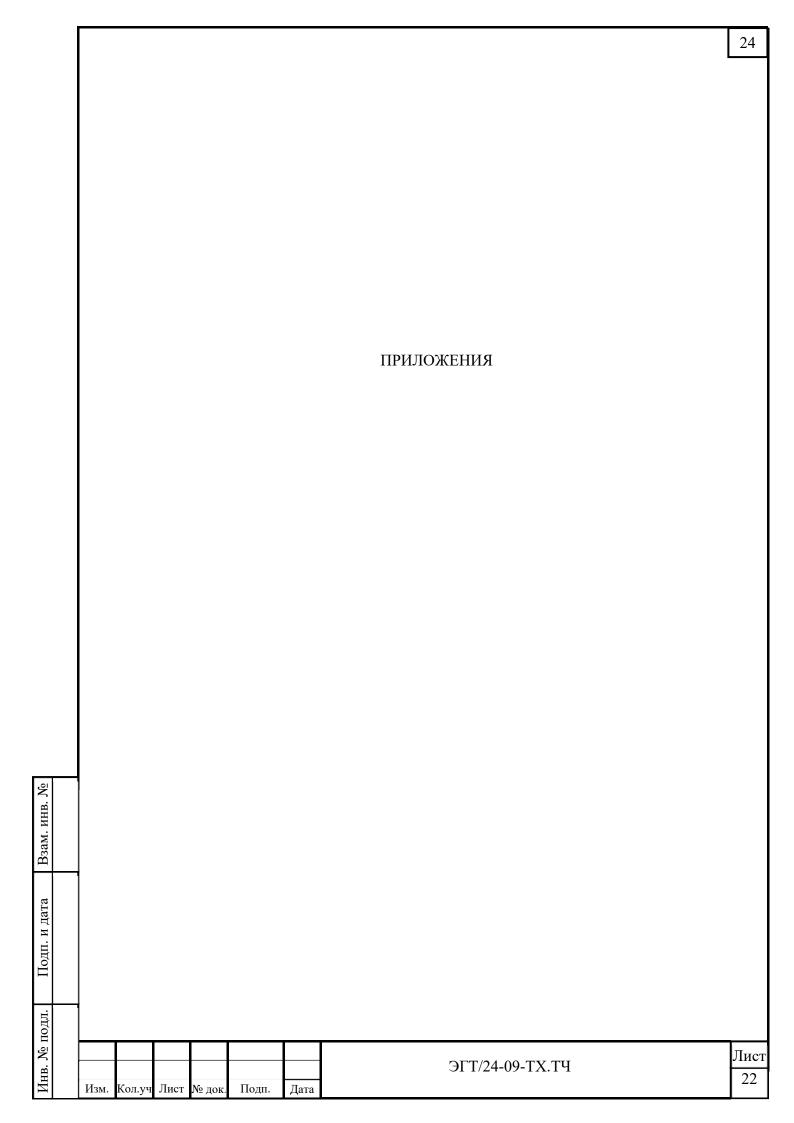
Экспликация помещений

Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния
101	Помещение фильтровального оборудования		В4
102	Помещение ВРУ / электрощитовая		В4
103	Склад реагентов		-
104	Мастерская текущего ремонта		В4
105	Санузел, Помещение уборочного инвентаря		Д
106	Помещение обработки/уплотнения осадка		В4

Экспликация помещений

Номер помеще- ния	Наименование	Площадь, м²	<i>Кат.</i> поме- ще- ния
101	Помещение фильтровального оборудования (антресоль)		В4
201	Воздуходувное отделение		В4
202	Венткамера		В4


Экспликация помещений


Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния
101	Помещение фильтровального оборудования		В4
102	Помещение ВРУ / электрощитовая		В4
103	Санузел		-
104			Д
105			В4
106	Склад реагентов		В4
107			В4
108			В4

Экспликация помещений

Номер помеще- ния	Наименование	Площадь, м²	Кат. поме- ще- ния
101	Помещение фильтровального оборудования (антресоль)		В4
201	Телекоммуникационный пункт		В4
202	Воздуходувное отделение		В4
203	Венткамера		В4

Разрез 1-1

1. Определение расчетных расходов с территории стока Левая часть

Водоотвод поверхностных сточных вод, запроектирован с учётом вертикальной планировки и предусматривает организованный отвод атмосферных осадков закрытой самотечной сетью. Расчёт дождевой канализации произведён в соответствии с СП 32.13330.2018 "Канализация. Наружние сети и сооружения".

Исходные данные: площади стока

1 Зона	кровли	сб	рос без оч	истки				
Ѕгазона=			Skp.=	8,022		Гобщая =	8,022	
2 зона	терри	гория						
Ѕгазона=	13,3766		Ѕасф.=	18,108		Гобщая =	31,4846	
Приняты	е для расче	га очистнь	ых ЛОС:					
S газона=	13,3766		Ѕасф.=	26,13		Гобщая =	39,5066	39,5066
Woч=	1896,6841	M^3		Qoc=	495,0959242	2 л/с		
$W_{T,cyT}=$	1406,6931	M^3		Q(oc.д)=	12,03714007	/ л/с		
Qr,=	3689,2394	л/с		Q(oc.T)=	22,61247251	л/с		
Qcal=	3689,2394	л/с						

Период однократного превышения интенсивности дождя Р, годы, для населенных пунктов при значении q20 Р года (п.7.4.3 таб.10 СП, благоприятные и средние условия расположения коллектора).

P= 1 2

1.1. Определение среднегодовых объемов поверхностных сточных вод

Среднегодовой объем поверхностных сточных вод Wr определяется по формуле:

$$W_r = W_{\pi} + W_{\tau} + W_{W} = 175123,884 \text{ м3/год}$$
 (21)

где Wд, Wт и Wм - среднегодовой объем дождевых, талых и поливо-моечных вод соответственно, м3.

Среднегодовой объем дождевых и талых вод определяется по формулам

$$W_{\pi} = 10h_{\pi} \Psi_{\pi} F = 122957,452 \tag{22}$$

$$W_{\rm T} = 10h_{\rm T}\Psi_{\rm T}FKy = 43496,432$$
 (23)

где: F – площадь стока коллектора, га;

hд – слой осадков, мм, за теплый период года, определяется по СП 131.13330.218 – 470мм;

hт – слой осадков, мм, за холодный период года (определяет общее годовое количество талых вод) или запас воды в снежном покрове к началу снеготаяния, определяется по СП 131.13330.2018 – 235мм;

Ку – коэффициент, учитывающий уборку снега, приближенно следует принимать равным:

Чд=Чmid – средний коэффициент стока для расчетного дождя (определяется как средневзвешенная величина в зависимости от постоянных значений коэффициента стока Чі для разного вида поверхностей, по таблице 7 СП32.13330.2018:

 Ψ т – общий коэффициент стока талых вод (принимается 0.5 - 0.7)

$$\Psi_{\mathbf{T}} = 0.7$$

Общий годовой объем поливомоечных вод определяется по формуле:

$$W_{\rm M} = 10mk \Psi_{\rm M} F_{\rm M} = 8670$$
 (24)

ручной 0.5 л/м2 (принято m=1.2 л/м2);

к - среднее количество моек в году (для средней полосы России составляет около 100-150) (принято 100);

Fм - площадь твердых покрытий, подвергающихся мойке, га;

Чм - коэффициент стока для поливомоечных вод (принимается равным 0,5).

1.2. Определение расчетных объемов дождевых сточных вод, при отведении на очистку

Объем дождевого стока от расчетного дождя W ос.д, м³, отводимого на очистные сооружения, определяется по формуле:

$$W_{\text{ос. I}} = 10h_{\text{a}}\Psi_{\text{mid}}F = 1896,6841 \text{ M}3$$
 (26)

где: F – площадь стока, га;

ha – максимальный суточный слой осадков, мм, образующихся за дождь, сток от которого подвергается очистке в полном объеме (расчетный дождь); определяется в соответствии с наблюдениями станции Можайск

Ψmid – средний коэффициент стока для расчетного дождя (определяется как средневзвешенная величина в зависимости от постоянных значений коэффициента стока Чі для разного вида поверхностей

ha = 7,25 Ψ mid = 0,6621972 Ψ_i п.7.4.2 Таблица 8 СП 32.13330.2018 асфальта = 0.95газона =

Максимальный суточный объем талых вод W (т,сут), м³, в середине периода снеготаяния, отводимых на очистные сооружения, определяется по формуле:

$$W_{\text{T,cyt}} = 10h_{c}Fa\Psi_{\text{T}}K_{\text{v}} = 1406,69312$$
 (29)

где: F – площадь стока, га;

 Ψ т – общий коэффициент стока талых вод (принимается 0.5 - 0.8);

$$\Psi_{\tau} = 0.7$$

hc - слой осадков заданной повторяемости, зависит от P (hc=20мм при P=1, климатический район 1) hc = 9.5

a -коэффициент, учитывающий неравномерность снеготаяния -0.8;

 K_v коэффициент, учитывающий уборку снега,:

$$K_{\rm v} = 1 - F_{\rm v}/F = 0,66929576$$
 (13)

 $K_{\rm y}=1$ - $F_{\rm y}/F=0,66929576$ где: Fy — площадь общей территории F, очищаемой от снега 10% (см. том содержание дороги)

0,5

1.3. Определение расчетных расходов дождевых и талых вод в коллекторах дождевой канализации

Расходы дождевых вод в коллекторах дождевой канализации, Qr, л/c, отводящих сточные воды, следует определять методом предельных интенсивностей по формуле 5 при условии, что водонепроницаемые поверхности составляют более 30% от общей площади водосборного бассейна.

$$Q_r = \frac{\Psi_{mid} AF}{t_r^n} := 3689,239376$$
 (5)

где: А, п – параметры характеризующие соответственно интенсивность и продолжительность дождя для конкретной местности:

$$A = q_{20} 20^n \left(1 + \frac{lgP}{lgm_r} \right)^y = 763,436095$$
 (7)

где: q20 – интенсивность дождя для данной местности продолжительностью 20 мин (определяют по табл.

Ж.2 СП 32.13330.2018;

$$q20 = 91$$

n – показатель степени, определяемый по СП 32.13330.2018 Табл. Ж.1

$$n = 0.71$$

mr – среднее количество дождей за год,

$$mr = 150$$

Р – период однократного превышения расчетной интенсивности дождя

у – показатель степени, по СП 32.13330.2018 Табл. Ж.1

$$y = 1,54$$

Ψmid – средний коэффициент стока для расчетного дождя (определяется как средневзвешенная величина в зависимости от постоянных значений коэффициента стока Ψi для разного вида поверхностей водосбора); F – расчетная площадь стока, га;

tr – расчетная продолжительность дождя, равная продолжительности протекания дождевых вод по поверхности и трубам до расчетного участка (определяется в соответствии с указаниями):

$$t_r = t_{con} + t_{can} + t_p = 10,7916667$$
 (8)

где: tcon – продолжительность протекания дождевых вод до уличного лотка или при наличии дождеприемников в пределах квартала до уличного коллектора (время поверхностной концентрации), мин, – 3мин;

tcan — то же, по уличным лоткам до дождеприемника (при отсутствии их в пределах квартала), определяемая по формуле 11

$$t_{can} = 0.021 \sum \frac{l_{can}}{V_{can}};$$
 = 0 (10)

где: lcan – длина участков лотков, м;

lcan = 0

Vcan – расчетная скорость течения на участке, м/с

$$Vcan = 0.8$$

tp – тоже, по трубам до рассчитываемого створа, определяемая по формуле:

$$t_p = 0.017 \sum \frac{l_p}{V_p};$$
 = 7,79166667 (11)

где: lp – длина участков трубопроводов, м;

$$lp = 550$$

Vp – расчетная скорость течения на участке, м/с ;

Расход дождевых вод для гидравлического расчета дождевых сетей, Qcal, л/c, следует определять по

$$Q_{cal} = \beta Q_r = 3689,239376 \text{ m/c}$$
 (6)

где: β – коэффициент, учитывающий заполнение свободной емкости сети в момент возникновения напорного режима

Расходы талых вод из-за различия условий снеготаяния по годам и в течении суток, а также неоднородности снежного покрова на застроенных территориях могут колебаться в широких пределах. Ориентировочно расходы талых вод, л/с, могут быть определены по слою стока за часы снеготаяния в течении суток:

QT=5.5hcKyF
$$\Psi$$
T/10+tp= 108,5730805 $_{\pi/c}$ (12)

где: hc – слой стока за 10 дневных часов [мм]

$$hc = 9.5$$

Ку – коэффициент, учитывающий частичный вывоз и уборку снега, формула 13

F – плошаль стока, га:

tr – время добегания от наиболее удаленной части бассейна [час], см.формула 8;

Чт-коэффициент стока талых вод, рекомендуется принять 0.5-0.8. Чт=0.8

1.4. Определение расчетных расходов поверхностного стока при отведении на очистку и в водные объекты

Расчетный расход поверхностных вод Qос,д, л/с, при отсутствии регулирования определяется по формуле:

Qr, -Расходы дождевых вод в коллекторах дождевой канализации перед распределительной камерой, л/с, см. формула 5.

К1, К2- коэффициенты, учитывающие изменение параметров стока при уменьшении значений Р, принятых при гидравлическом расчете дождевой сети

1.5. Расчетная производительность очистных сооружений накопительного типа

СП 32.13330.2012 «Канализация. Наружные сети и сооружения» актуализированная редакция СНиП 2.04.03-85. При проектировании очистных сооружений накопительного типа для определения их производительности Qoc, л/с, следует принимать большее из значений производительности, рассчитанных по дождевому Q(ос.д) и талому Q(ос.т) стоку.

Производительность очистных сооружений, рассчитываемая по дождевому стоку Q(ос.д), л/с, определяется по формуле:

$$Q_{\text{oc,}\pi} = \frac{W_{\text{oc,}\pi} + W_{\text{TH}}}{3.6 \cdot (T_{\text{OM}} - T_{\text{OTCT}} - T_{\text{TH}})} = 12,0371401 \xrightarrow{43,3337 \text{ M3/yac}}_{\pi/c}$$
(32)

Производительность очистных сооружений, рассчитываемая по талому стоку Q(ос.т), л/с, определяется по

формуле (33) на основании суточного объема талых вод в середине периода снеготаяния WT^cyt;
$$Q_{\text{ос.т}} = \frac{W_{\text{т}}^{\text{сут}} + W_{\text{тп}}}{3,6 \cdot (T_{\text{оч}}^{\text{т}} - T_{\text{отст}} - T_{\text{тп}})} = 22,6124725 \frac{81,4049 \text{ м3/час}}{\text{п/c}}$$
(33)

где: W(ос.д) – объем стока от расчетного дождя, м³, отводимого на очистные сооружения (см. формула 26); Wтп – суммарный объем загрязненных вод, образующихся при обслуживании технологического оборудования очистных сооружений в течение нормативного периода переработки объема стока от расчетного дождя

$$W_{T\Pi} = 140$$
 m3

3,6 – переводной коэффициент;

Точ – нормативный период переработки объема стока от расчетного дождя, отводимого на очистные сооружения, [час]

Ттп – суммарная продолжительность технологических перерывов в работе очистных сооружений в течение нормативного периода переработки объема стока от расчетного дождя, отводимого на очистные сооружения, [час]

$$T_{T\Pi}=1$$

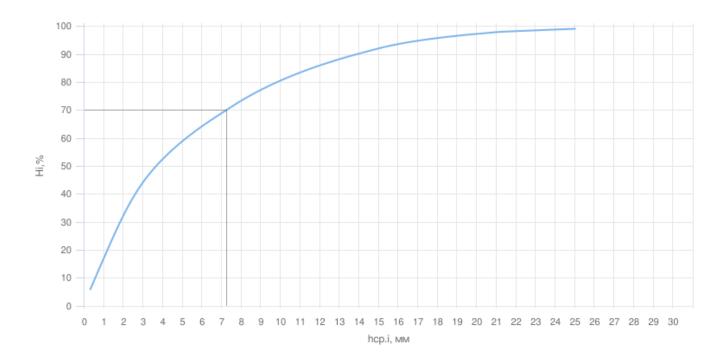
Тотст – минимальная продолжительность отстаивания стока в аккумулирующем резервуаре. При использовании аккумулирующего резервуара только для регулирования расхода отводимых на очистку сточных вод величина продолжительности предварительного отстаивания из расчета исключается, [час]

$$Torct = 0$$

Номер ЛОС. Катуар

Wт^сут – суточный объем талых вод в середине периода снеготаяния (см. п.п.1.2)

Tтп — нормативный период переработки суточного объема талого стока, должен приниматься не менее 14ч, учитывая, что продолжительность процесса весеннего снеготаяния на большей части территории $P\Phi$ в среднем составляет 6-10 часов в сутки


 T_{T}° оч= 20

Поступление на очистку

Ѕгазона=	13,3766	Ѕасф.=	26,13		Гобщая =	39,5066
Wоч д=	1896,6841 м³		Qoc=	495,0959242	2 л/с	
$W_{T,cyT}=$	1406,6931 м³		Q(oc.д)=	12,03714007	7 л/с	
Qr,=	3689,2394 л/с		Q(oc.T)=	22,61247251	л/с	
Qcal=	3689,2394 л/с					

Расчет максимального суточного слоя дождевых осадков (\mathbf{h}_{a}) по России и СНГ

Суточный слой осадков, мм	Число дней с суточным слоем осадков	Средний суточный слой	Число дней с суточным слоем осадков	Суммарный за тёплый период года слой дождевых осадков, принимаемый на очистные сооружения		
IVIIVI			осадков	$h_{\scriptscriptstyle{\mathrm{cp.i}}}$, mm	H ₁ ,%	
1	2	3	4	5	6	
≥0,1	11.9 + 12.9 + 13.7 + 13.7 + 14.1 + 13.8 + 15.4 = 95.5	0.3	95.5 - 79.3 = 16.2	$(0.3 \times 95.5) = 28.65$	28.65 ÷ 486.06 × 100 = 5.89	
≥0,5	9.4 + 10.8 + 11.7 + 11.7 + 11.8 + 11.3 + 12.6 = 79.3	0.75	79.3 - 67.1 = 12.2	$(0.75 \times 79.3) +$ $(0.3 \times 16.2) =$ 64.335	64.335 ÷ 486.06 × 100 = 13.24	
≥1,0	7.5 + 9 + 10.1 + $10.3 + 10.3 + 9.7$ $+ 10.2 = 67.1$	3	67.1 - 29 = 38.1	$(3 \times 67.1) + (0.3 \times 16.2) \times (0.75 \times 12.2) = 215.31$	215.31 ÷ 486.06 × 100 = 44.3	
≥5,0	2.6 + 3.7 + 4.7 + 4.9 + 4.7 + 4.3 + 4.1 = 29	7.5	29 - 13.5 = 15.5	$(7.5 \times 29) + (0.3 \times 16.2) \times (0.75 \times 12.2) \times (3 \times 38.1)$ = 345.81	345.81 ÷ 486.06 × 100 = 71.15	
≥10,0	0.8 + 1.6 + 2.2 + 2.7 + 2.5 + 1.9 + 1.8 = 13.5	15	13.5 - 3.4 = 10.1	$(15 \times 13.5) + (0.3 \times 16.2) \times (0.75 \times 12.2) \times (3 \times 38.1) \times (7.5 \times 15.5) = 447.06$	447.06 ÷ 486.06 × 100 = 91.98	
≥20,0	$0.1 + 0.3 + 0.6 + \\0.9 + 0.8 + 0.4 + \\0.3 = 3.4$	25	3.4 - 1 = 2.4	$(25 \times 3.4) + (0.3 \times 16.2) \times (0.75 \times 12.2) \times (3 \times 38.1) \times (7.5 \times 15.5) \times (15 \times 10.1) = 481.06$	481.06 ÷ 486.06 × 100 = 98.97	
≥30,0	0.2 + 0.4 + 0.2 + 0.1 + 0.1 = 1	30	1 - 0 = 1	$(30 \times 1) + (0.3 \times 16.2) \times (0.75 \times 12.2) \times (3 \times 38.1) \times (7.5 \times 15.5) \times (15 \times 10.1) \times (25 \times 2.4) = 486.06$	100	

 $H_{\rm i}$ - суммарный слой дождевых осадков за тёплый период года (%); $h_{\rm cp.\,i}$ - величина максимального суточного слоя дождя (мм)

Результат: максимальный суточный слой дождевых осадков, при котором обеспечивается приём на очистные сооружения 70% суммарного количества осадков $h_a = 7.24$ мм.