Техническое задание на создание автоматизированной системы управление управления и независимой системы мониторинга параметров чистых помещений объекта — Научно-лабораторный комплекс, корпус 2a.

Общие сведения	Автоматизированная система управления и независимого мониторинга параметров чистых помещений объекта
Адрес местонахождения объекта	г. Москва, шоссе Энтузиастов, д.23, корпус 2а
Общие положения	Основным назначением системы автоматизации и диспетчеризации инженерных систем является централизованный мониторинг оборудования и управление режимами работы инженерных систем объекта: 1. Система автоматизации вентиляции и микроклимата (в том числе чистых помещений); 2. Система мониторинга параметров чистых помещений (температура, влажность и перепады давления). 3. Система автоматизации индивидуального теплового пункта 4. Систему автоматизации пожарной и повысительной насосной станции 5. Систему учета энергоносителей 6. Вертикального транспорта 7. Системы дымоудаления
Специальные требования	Система должна быть централизованной, масштабируемой, все протоколы должны быть открыты и находится в свободном доступе. Все измерительные приборы, оборудования преобразования сигналов должны состоять в реестре средств измерений и быть поверены Система мониторинга параметров чистых помещений должна быть независима от системы автоматизации и должна соответствовать требованиям, предъявляемым к компьютеризированным системам и обеспечению целостности данных согласно Решение Совета Евразийской экономической комиссии от 03.11.2016 №77 «Об утверждении Правил надлежащей производственной практики Евразийского экономического союза»
Требования к системе управления и диспетчеризацие й системы вентиляции	Система управления вентиляцией должна обеспечивать: 1. Автоматическую работу приточно-вытяжного оборудования объекта, перечень объектов согласно разделов проектной документации ОВ1, ОВ2, ОВ3 2. Интеграцию шкафов управления вентиляцией в систему управления вентиляцией и микрокламата 3. Поддержание, контроль и регистрация параметров (температура, влажность, расход) подающего воздуха системы вентиляции. 4. Контроль за работой оборудования, автоматическое включение резервного оборудования при выходе из строя основного, ротацию основного и резервного оборудования для продления срока эксплуатации. Все данные должны быть дискретными и обязаны корректироваться пользователем системы 5. Диспетчеризацию и удаленное управление системой вентиляции. 6. Поддержание перепадов давления, согласно проектной документации, в блоках чистых помещений. 7. Отображение и дистанционное управление клапанов системы

дымоудаления.

- 8. Отключение контроля перепада давления при открытии дверей между чистыми помещениями, до восстановления параметров (время установления уставки должно задаваться пользователем системы).
- 9. Система обязана иметь графическое отображение перепадов давления чистых помещений контроль загрязненности воздушных фильтров;
- 10. Контроль работы двигателя циркуляционного насоса;
- 11. Контроль аварий и работы ККБ;
- 12. Контроль аварий пароувлажнителя;
- 13. Блокировку работы приточной установки при аварии;
- 14. Обеспечение работы установки в режимах «зима»-«лето»;
- 15. Блокировку работы установки при поступлении сигнала "Пожар", с сохранением работы цепей защиты теплообменника от замораживания.
- 16. Защиту системы приточных установок от размораживания.

Требования к системе мониторинга параметров чистых помещений

Система мониторинга параметров чистых помещений должна обеспечивать:

- 1. Мониторинг параметров температуры, влажности, перепадов давления между чистыми помещениями в режиме 24 часа, 7дней в неделю, 365 дней в году.
- 2. Журналирование и архивирование параметров, получаемых данных, аварийных оповещений согласно п.1. Время журналирования должно быть задаваться пользователем системы.

Все архивные данные должны быть доступны для просмотра в любой момент времени без остановки записи данных.

Должна быть доступна визуальная схема расположения датчиков с показаниями

Просмотр статуса датчиков должен быть доступен

Оповещение о потере связи с датчиком

Удаленное конфигурирование датчиков

Непрерывное измерение в случае прерывания питания системы

- 3. Для чистых помещений система должна обеспечивать непрерывный мониторинг следующих параметров:
- перепад давления до 120 Па с погрешностью не более $\pm 1\%$ полной шкалы для 50 Па, 100 Па;
- температуры в диапазоне -5°C...+35°C с погрешностью не более 0.5°C;
- относительной влажности в диапазоне 5%...95% с погрешностью не более ± 3 -4 %.

Точки установки датчиков мониторинга и значения контролируемых параметров должны быть согласованы с заказчиком.

- Оперативного информирования ответственных ДИЦ несоблюдении режима микроклимата, либо возникновении ситуации, нештатной ведущей к выходу показателей установленные пределы (перебой электричества, выход из строя оборудования и пр.) посредством электронных почтовых, СМС сообщений (или иного способа оперативной связи), а так же визуального и звукового оповещения;
- 5. Автоматизированного формирования отчетов в указанной форме и

неизменяемом формате (например, экспорт в ПДФ и бумажный носитель) о режиме микроклимата в оборудованных помещениях за определенный период времени.

- 6. Срок хранения измеренных значений в БД в течение не менее 6 лет (макс. срок хранения продукции 5 лет + 1 год). База данных не должна иметь возможность цикличной записи с перезаписыванием ранее полученных данных при достижении своего лимита
- 7. Система мониторинга должна соответствовать требованиям, предъявляемым к компьютеризированным системам и обеспечению целостности данных, в том числе:

СанПиН 3.3686-21 / GDP / GSP/ GAMP 5/ FDA 21CFR Part11.

Авторизация пользователей должна происходить по средствам ввода инживидуального логина и пароля. Должна быть возможность идентификации пользователя согласно его ФИО

Должны быть предусмотрены разные группы пользователей с разными правами доступа к функционалу системы

- 8. Все измерительные средства системы мониторинга: первичные сопротивления. (термометры датчики c **унифицированным** аналоговым выходным сигналом, измерительные головки, и пр.) так вторичные аналогового (модули ввода, измерительные преобразователи) должны быть внесены в государственный реестр измерений РΦ. Приборы должны иметь монтаж/демонтаж (с помощью быстросъемных кронштейнов, креплений, клемм, разъемом, крепежных площадок и т. п.) Для чистых помещений датчики, по возможности, должны быть установлены в нержавеющие гильзы и не требовать особого ухода. быть неприхотливыми к рабочей среде. Степень защиты элементов системы не менее IP 54.
- 9. Узловые щиты системы мониторинга должны быть оснащены промышленными источниками бесперебойного питания.
- 10. Система должна быть легко масштабируема (Подключение к системе дополнительных контролируемых помещений или увеличение числа датчиков температуры/влажности уже эксплуатируемых помещениях не должно сопровождаться существенной перестройкой ранее спроектированного решения. Масштабирование системы должно осуществляться на уровне добавления дополнительных модулей (при необходимости) и перенастройки ПО.)

Требования к системе автоматизации теплового пункта

Автоматика теплового пункта обеспечивает:

- 1. Регулирование подачи теплоты (теплового потока) в систему отопления в зависимости от изменения параметров наружного воздуха с целью поддержания заданной температуры воздуха в отапливаемых помещениях. Регулирование температуры подающего теплоносителя в контур отопления предусмотрено в соответствии с температурным графиком с возможностью относительной корректировки заданного значения;
- 2. Поддержание требуемого перепада давлений воды в подающем и обратном трубопроводах тепловых сетей на вводе в ИТП при превышении фактического перепада давлений над требуемым более чем на 200 кПа;
- 3. Защиту систем потребления тепла от повышения давления или температуры воды в трубопроводах этих систем при возможности

превышения допустимых параметров;

- 4. Поддержание заданного давления воды в системах отопления и горячего водоснабжения;
- 5. Блокировку включения резервного насоса при отключении рабочего;
- 6. Контроль параметров теплосети на вводе в ИТП (давление, температура);
- 7. Контроль работоспособности и состояния насосов;
- 8. Равномерное распределение моторесурсов насосов;
- 9. Сбор и передачу информации о параметрах и состоянии оборудования ИТП в систему диспетчеризации.

Проектом предусмотреть следующие режимы работы ИТП:

- 1. ручной режим команды формируются на щите управления переключателями и кнопками, расположенными на лицевой панели щита;
- 2. автоматический режим команды формируются контроллером на основании информации, полученной от периферийных датчиков по заданной программе.

В рамках диспетчерского контроля за работой ИТП подразделом проекта предусмотреть передачу в систему диспетчеризации по сети обмена и передачи данных информации о статусах оборудования, текущие значения технологических параметров и, при необходимости, реализуется дистанционное управление насосными агрегатами ИТП.

В систему диспетчеризации передаются следующие параметры:

- 1. давление в подающем трубопроводе теплосети;
- 2. давление в обратном трубопроводе теплосети;
- 3. температура в подающем трубопроводе теплосети;
- 4. температура в обратном трубопроводе теплосети;
- 5. температура наружного воздуха;
- 6. температура в подающем трубопроводе системы отопления;
- 7. температура в обратном трубопроводе системы отопления;
- 8. давление в подающем трубопроводе системы отопления;
- 9. давление в обратном трубопроводе системы отопления;
- 10. температура в подающем трубопроводе системы теплоснабжения:
- 11. температура в обратном трубопроводе системы теплоснабжения;
- 12. давление в подающем трубопроводе системы теплоснабжения;
- 13. давление в обратном трубопроводе системы теплоснабжения;
- 14. температура в подающем трубопроводе ГВС:
- 15. температура в обратном трубопроводе ГВС;
- 16. давление в подающем трубопроводе ГВС;
- 17. давление в обратном трубопроводе ГВС;
- 18. температура теплоносителя за теплообменником ГВС:
- 19. авария и остановка группы циркуляционных насосов систем отопления, теплоснабжения и ГВС;
- 20. авария электроснабжения щита управления ИТП.

Для местной визуализации состояния оборудования ИТП и отклонения технологических параметров от нормы на щите управления предусматривается световая сигнализация о состоянии насосных агрегатов и следующих технологических параметров:

- 1. для насосных агрегатов «Работа» «Авария»;
- 2. давление в обратном трубопроводе на выходе из ИТП «Минимальное» «Максимальное»;
- 3. температура воды, поступающая в систему ГВС «Минимальная» -

«Максимальная»;

4. минимальный перепад давления в подающем и обратном трубопроводах тепловой сети на вводе ИТП;

Отображение информации о состоянии технологических параметрах и инженерного оборудования предусмотрено на щите автоматики в виде светосигнальной арматуры.

Требования системы автоматизации пожарной и повысительной насосной станции

При включении системы противопожарного водопровода, поступление носителя в систему хозяйственно-питьевого водоснабжения прекращается путем отключения в автоматическом режиме установки повышения давления.

На АРМ должны отображаться данные с насосных станции:

- 1. давление на вводе в здание
- 2. давление на выходе из станции
- 3. контроль за работой насосов (авария, работа)
- 4. сухой ход
- 5. включение обводной задвижки при включении насосной станции

Станция должна контролировать реле контроля фаз с целью работы в правильном режиме

Требования системы учета энергоносителей

Система автоматического учета энергоносителей предусматривает учет: воды;

электроэнергии;

тепловой энергии.

Для учета воды XBC и ГВС проектом предусмотрен шкаф учета энергоресурсов (ШУЭ), расположенный в помещении водомерного узла. Для приема показаний счетчиков водоснабжения в щите предусмотрены адресные счётчики расхода, включенные в двухпроводную линию связи контроллера С2000-КДЛ, который в свою очередь передает данные по интерфейсу RS-485 в систему диспетчеризации. Для трансляции данных интерфейса RS-485 в Ethernet в щите предусмотрен преобразователь С2000- Ethernet.

Проектом предусмотреть прием показаний и характеристик электросети от счетчиков электрической энергии. Данные передаются в систему диспетчеризации по интерфейсу RS-485. Для интеграции данных предусмотрен преобразователь NPORT 5232 производства компании MOXA или аналог.

Проектом предусмотреть учет потребляемого тепла на вводе теплосети. Теплосчетчик обеспечивает контроль и регистрацию следующих параметров:

время работы приборов узла учета;

полученную тепловую энергию;

массу (или объем) теплоносителя, полученного по подающему трубопроводу и возвращенному по обратному трубопроводу;

массу (или объем) полученного теплоносителя по подающему трубопроводу и возвращенного по обратному трубопроводу за каждый час;

	среднечасовую и среднесуточную температуру теплоносителя в подающем и обратном трубопроводах узла учета. Передача информации теплосчетчиком в систему объекта предусмотрена по сети Ethernet.
Требовани к системе противодымной защиты	 автоматическое, дистанционное и местное отключение систем общеобменной вентиляции при срабатывании системы пожарной сигнализации; автоматическое, дистанционное и местное управление противопожарными клапанами при пожаре; автоматическое и местное управление реверсивными клапанами в монтажном стакане на кровле; автоматическое, дистанционное и местное управление клапанами
	дымоудаления при пожаре; 5) автоматическое, дистанционное и местное управление вентиляторами дымоудаления; 6) опускание лифтов на основной посадочный этаж с блокированием дверей
Требования к системе вертикального транспорта	Система должна обеспечивать: - двухстороннюю переговорную связь между диспетчерским пунктом и кабиной лифта, диспетчерским пунктом и машинным помещением; - сигнализация об открытии дверей машинного помещения; - сигнализация о срабатывании цепи безопасности лифта; - идентификация поступающей сигнализации;
	- идентификация поступающей сигнализации, - автоматический контроль исправности переговорного тракта; - контроль залипания кнопок вызова; - дистанционное включение электрооборудования; - работоспособность переговорной связи и контроля состояния лифта при полностью обесточенном здании;
	- ведение журнала событий.
Общая архитектура системы	Структура системы базируется на модели трехуровневой архитектуры: — «Верхний уровень» - сервер и автоматизированное
	рабочее место инженера; — «Уровень локальной автоматики» включает в себя щиты автоматизации с установленными локальными программируемыми логическими контроллерами с шинным интерфейсом, объединенные в единую информационную сеть; — «Полевой уровень» - включает в себя устройства автоматики («полевые» приборы) и оконечное электрическое оборудование, которыми могут быть датчики и исполнительные устройства, локальные пульты и панели управления оборудованием, а также устройства согласования
	сигналов первичных датчиков с входами контроллеров сбора информации; — Сеть диспетчеризации объекта — служит для передачи информации между уровнем локальной автоматики и уровнем менеджмента. Основой локальной автоматики являются щиты автоматики и управления (ЩУ) на базе контроллеров прямого цифрового управления серии РХС компании Siemens или аналога и подсоединенных модулей ввода/вывода, расположенные

	вблизи контролируемых систем.
	Локальная сеть автоматизации строится по технологии
	Ethernet (протокол Modbus TCP). Направления локальной сети
	автоматизации подключаются в коммутатор ЛВС объекта.
Автоматизация и	Автоматизация и диспетчеризация приточных систем обеспечивает:
диспетчеризация	 предварительный прогрев водяных воздухонагревателей
приточных систем	при запуске систем в зимний и переходный периоды;
	– регулирование давления приточного воздуха
	изменением производительности вентилятора посредством частотного преобразователя;
	 контроль работы вентилятора по датчику перепада давления;
	– управление циркуляционными насосами смесительных
	узлов и включение резервного при неисправности основного;
	– управление и регулирование производительности
	пароувлажнителя;
	 управление воздушной заслонкой на заборе воздуха,
	контроль ее положения;
	 контроль работы двигателя вентилятора;
	На АРМ оператора системы диспетчеризации инженерных
	систем передается следующая информация:
	 температура наружного воздуха;
	 положение воздушной заслонки;
	– загрязнение фильтров;
	 статус работы и аварии вентилятора;
	– положение переключателя выбора режима работы
	вентилятора;
	 положение переключателя выбора режима работы
	циркуляционного насоса;
	 перепад давления на вентиляторе;
	– статус работы и аварии ККБ;
	 угроза замораживания воздухонагревателя;
,	температура приточного воздуха;
	влажность приточного воздуха;
	давление приточного воздуха;
	 температура обратного теплоносителя;
	авария электроснабжения щита;
	– пожар.
Автоматизация и	Автоматизация и диспетчеризация вытяжных систем обеспечивает:
диспетчеризация	 регулирование давления вытяжного воздуха изменением
вытяжных систем	производительности вентилятора посредством частотного
	преобразователя;
	 контроль работы вентилятора по датчику перепада
	давления;
	 управление воздушной заслонкой на выбросе воздуха,
	контроль ее положения;
	 контроль работы двигателя вентилятора;
	 контроль загрязненности воздушных фильтров;
	– блокировку работы установки при аварии;

блокировку работы установки при поступлении сигнала "Пожар".

На APM оператора системы диспетчеризации инженерных систем передается следующая информация:

- положение воздушной заслонки;
- загрязнение фильтров;
- статус работы и аварии вентилятора;
- положение переключателя выбора режима работы вентилятора;
 - перепад давления на вентиляторе;
 - давление вытяжного воздуха;
 - авария электроснабжения щита;
 - пожар.

Система вентиляции воздуха чистых помещений. Микроклимат.

Проектом предусмотрена система поддержания перепада давления воздуха в чистых помещениях за счет вытяжного воздуха.

Для систем, обслуживающих чистые помещения, предусмотрено 2 ступени регулирования:

1 ступень - клапаны-регуляторы постоянного расхода на приточных воздуховодах и клапаны-регуляторы постоянного давления перепада на **ХІЧЖКТІЧЯ** воздуховодах помещений. В приточных клапанах уже имеется встроенный расходомер, с помощью которого происходит поддержание расхода. В состав вытяжных клапанов входит контроллер, который помощью встроенного датчика, поддерживает постоянным перепад давления за счет управления приводом воздушной заслонки.

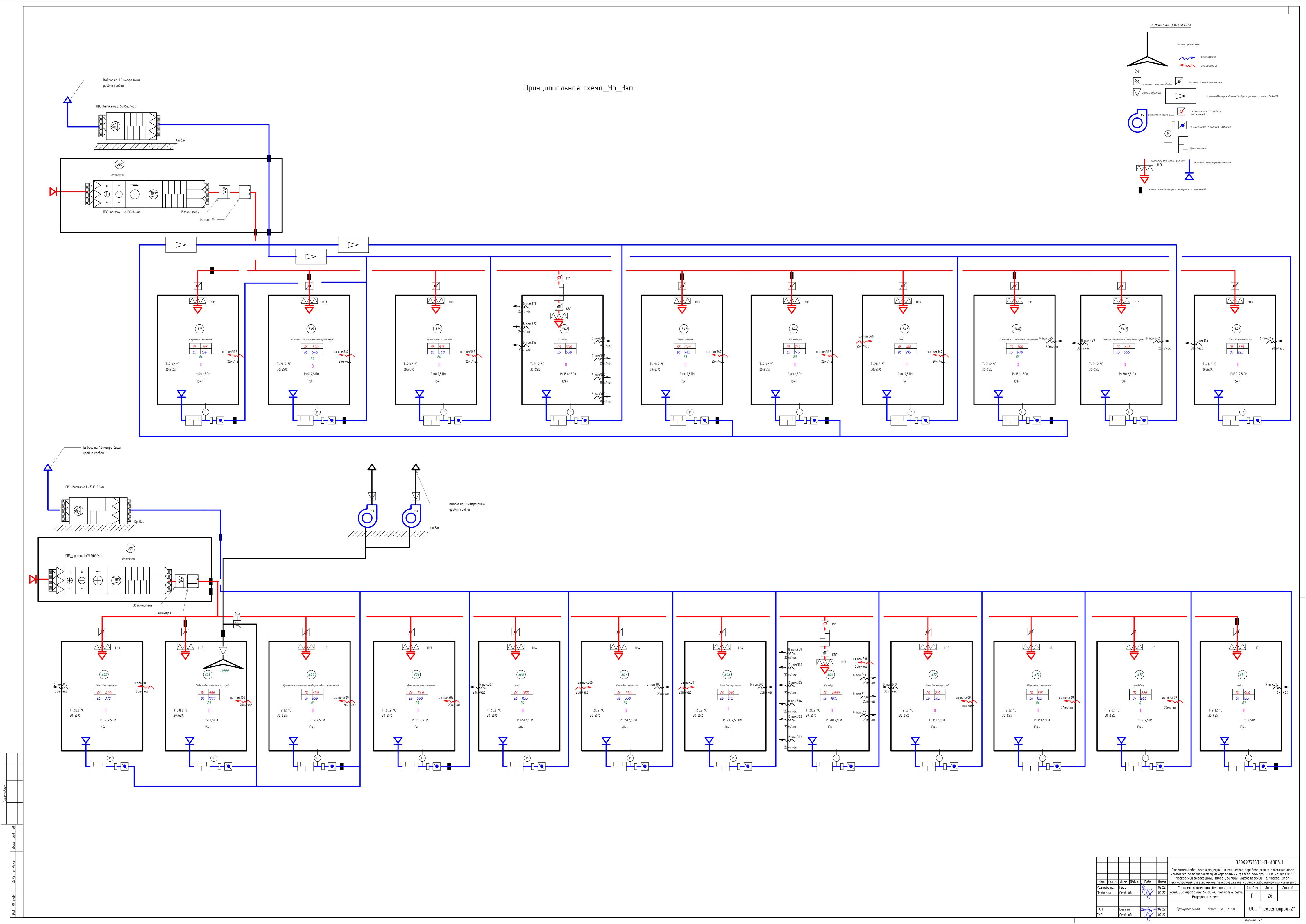
2 ступень – поддержка постоянного давления в воздухосети системы при помощи частотных преобразователей, которые меняют производительность приточного и вытяжного вентиляторов по показаниям датчиков перепада давления, расположенных на воздуховодах до первого ответвления воздухосети.

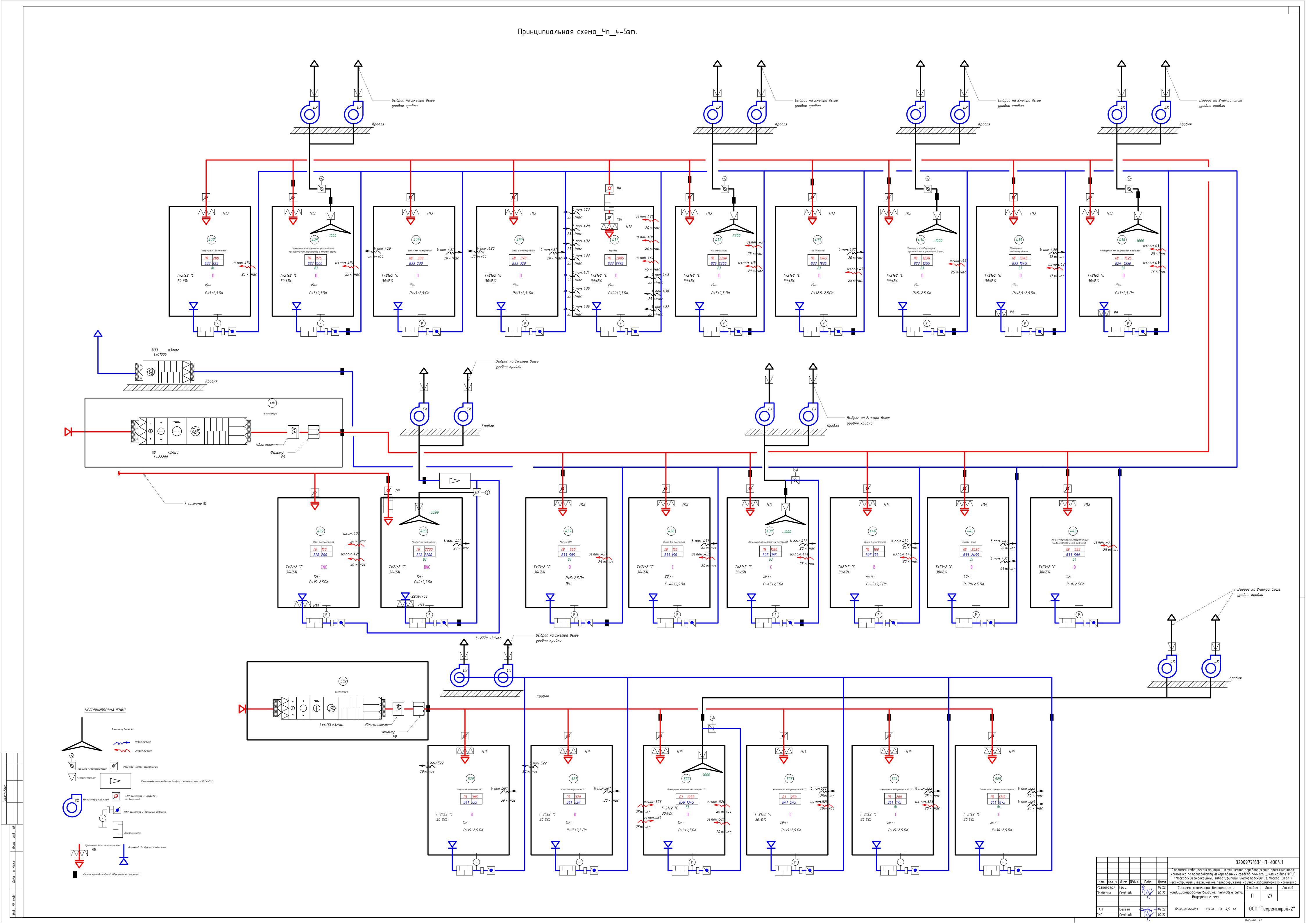
Контроллеры клапанов объединены интерфейсом RS-485 в шлейф для обмена данными с системой диспетчеризации по протоколу ModBus RTU.

Система мониторинга параметров чистых помещений

В качестве ПО системы микроклимата должна быть предусмотрена SCADA система MasterSCADA 3.X (например, компании ИнСАТ (включена в единый реестр программ для электронных вычислительных машин и баз данных в соответствии с приказом Минкомсвязи РФ от 08.11.2016 №538.)

Данные мониторинга должны передаваться на пульт диспетчера в реальном времени.


Должен быть обеспечен раздельный доступ к ПО системы с прослеживаемыми и гибкими механизмами настройки прав доступа пользователей в систему.


Должен быть реализован контрольный журнал для фиксирования контрольных следов(в нем фиксируются

критические изменения, такие как изменение конфигурации, удаление чего-либо с фиксацией лица совершившего данное действие и временным отрезком котрый включает в себя время и дату);

Должно выполняться резервное копирование данных в автоматическом режиме и предусмотрена возможность выполнения резервного копирования в ручном режиме.

Данные должны быть разделены и храниться на разных носителях

