Расчет температурного режима вентилируемого подполья

- 1. Температурный режим вентилируемого подполья характеризуется среднегодовой температурой воздуха в подполье $T_{c,a}$, устанавливаемой расчетом в зависимости от предусмотренного проектом значения среднегодовой температуры многолетнемерзлого грунта на его верхней поверхности T_0 , теплового режима сооружения и режима вентилирования подполья.
- 2. Среднегодовая температура воздуха в вентилируемом подполье $T_{c,a}$, °C, обеспечивающая предусмотренную в проекте среднегодовую температуру многолетнемерзлого грунта на его верхней поверхности T_0 , °C, вычисляется по формуле

$$T_{c,a} = k_0 T'_0$$
, (1)

где T'_0 - расчетная среднегодовая температура на верхней поверхности многолетнемерзлого грунта в основании сооружения, отвечающая проектному положению границы сезонного оттаивания грунтов, включая грунты подсыпки;

 k_0 - коэффициент, принимаемый по таблице 1 в зависимости от значений $t_{f,n}$ и λ_f/λ_{th} , где $t_{f,n}$ - продолжительность периода с отрицательной среднесуточной температурой воздуха, сут, принимаемая по СП 131.13330.2020;

 λ_f и λ_{th} - теплопроводность соответственно мерзлого и талого грунтов.

$$T_{c,a} = 1.0 \text{ x } (-10.19) = -10.19 \text{ °C}$$

Таблица 1 - Коэффициент ко

$\lambda_{ m f}/\lambda_{ m th}$	Значения коэффициента k_0 при $t_{f,n}$, сут				
	200	225	250	275	300
1,0	1,0	1,0	1,0	1,0	1,0
1,1	0,87	0,96	0,98	0,99	1,0
1,2	0,78	0,93	0,97	0,99	1,0
1,3	0,72	0,90	0,96	0,99	1,0

3. Среднегодовая температура многолетнемерзлого грунта на его верхней поверхности Т'0, °С, устанавливаемая при эксплуатации сооружений, назначается из условия обеспечения требуемых расчетных температур грунта охлаждающими устройствами. Для зданий и сооружений значение Т'0 определяется по формуле:

Расчетная температура многолетнемерзлых грунтов основания без учета теплового влияния сооружения определяется в нашем случае:

$$T_0 = T_{bf} = -10,19 \, ^{\circ}\text{C}$$

$$T'_0 = T_0 + \Delta T$$
, (2)

$$T'_0 = -10,19 + 0 = -10,19 \, ^{\circ}C$$

где T_0 - температура многолетнемерзлого грунта, °C ($T_0 = -10.9$ °C);

 ΔT - понижение температуры, которое должно быть обеспечено охлаждающими устройствами (проветриваемое подполье, охлаждающие трубы, СОУ и т.д.), °С, принимается по таблице 2.

Таблица 2 - Понижение температуры ΔT

Среднегодовая температура грунта с учетом температуры начала замерзания $(T_0$ - $T_{bf})$, $^{\circ}C$	Понижение температуры ∆T, °C		
$(T_0 - T_{bf}) > -0.5$	-2,5		
$-0.5 \ge (T_0 - T_{bf}) > -1.0$	-1,5		
$-1.0 \ge (T_0 - T_{bf}) > -1.5$	-0,5		
$-1,5 \ge (T_0 - T_{bf}) > -6,0$	0		

Примечание - При T_0 - T_{bf} ниже минус 6 °C допускается повышение природных температур многолетнемерзлых грунтов до значения T_0 , которое обеспечивает требуемую несущую способность основания.

где $T_{\rm bf}$ – температура начала замерзания грунта.

$$T_{bf} = A - B (53C_{ps} + 40C_{ps}^{2})$$

A - коэффициент, характеризующий температуру начала замерзания незасоленного грунта, A = 0.18;

B - коэффициент, зависящий от типа засоления грунта, B=0,85 для грунтов с континентальным типом засоления.

Концентрация порового раствора C_{ps} характеризует степень минерализации грунтовой влаги. Ее допускается определять по формуле:

$$C_{ps} = D_{sal}/(D_{sal} + 100W),$$

где W - влажность засоленного грунта, принимаемая для грунтов с льдистостью itot $\leq 0,4$ равной $W_{tot},$ а с $i_{tot}>0,4$ равной $W_{m}.$

$$W_w = k_w W_p + \eta D_{sal}$$

где D_{sal} - степень засоленности грунта, характеризует относительное содержание в грунте воднорастворимых солей, ее следует определять по ГОСТ 25100 как отношение массы солей g_s к массе сухой навески грунта g_d (включая массу содержащихся в нем солей) по формуле $D_{sal} = (g_s/g_d)100, \ D_{sal} = 17.$

 $k_{\rm w}$ - коэффициент, принимаемый в зависимости от числа пластичности $I_{\rm p}$ и температуры грунта T ($k_{\rm w}=0$);

 η - коэффициент, принимаемый равным 4,0 - для песков и супесей (при температуре грунта: -15 °C.

$$W_w = k_w W_p + \eta D_{sal} = 0 + 4.0x0.17 = 0.68 \%$$

 $C_{ps} = 17 / (17 + 100 \times 0.68) = 0.2$

$$T_{bf} = 0.18 - 0.85 (53x0.2 + 40x0.2^{2}) = -10.19 \text{ °C}$$

Д.4 Установленная расчетом по таблице 2 среднегодовая температура воздуха в подполье $T_{c,a}$ при естественном вентилировании подполья за счет ветрового напора

обеспечивается подбором модуля его вентилирования М, определяемого соотношением

$$M = A_v/A_b$$
, (3)

где A_v - для подполий с продухами - общая площадь продухов, M^2 (A_v =0,21 x 4= 0,84 M^2);

 A_b - площадь здания в плане по наружному контуру, $A_b = 451,4 \text{ m}^2$.

$$M = 0.84 / 451.4 = 0.001861$$

5. Модуль вентилирования M, необходимый для обеспечения расчетной температуры воздуха в подполье $T_{c,a}$ при его естественном вентилировании, вычисляется по формуле

$$M = k_c \frac{T_{in} - T_{c,a} - (T_{c,a} - T_{out})\chi + \xi}{0,77R_0 C_v k_a V_a (T_{c,a} - T_{out})} \times \sqrt{1 + \sum_{i=1}^{n} \chi_i},$$
(4)

где k_c - коэффициент, принимаемый в зависимости от расстояния между зданиями а и их высотой h, равным:

1,0 при $a \ge 5h$;

1,2 при a = 4h;

1,5 при а \leq 3h - принятое значение k_c ;

 T_{in} - расчетная температура воздуха в помещении, T_{in} = - 5 °C;

 T_{out} - среднегодовая температура наружного воздуха, T_{out} = - 9,8 °C;

 R_0 - сопротивление теплопередаче перекрытия над подпольем, $R_0 = 1,55 \text{ м}^2 \cdot ^{\circ}\text{C/Bt};$

 C_v - объемная теплоемкость воздуха, принимаемая равной 1300 Дж/(м³·°С);

 k_a - обобщенный аэродинамический коэффициент, учитывающий давление ветра и гидравлические сопротивления, принимаемый равным: для сооружений прямоугольной формы - $k_a = 0.374$;

 V_a - средняя годовая скорость ветра, $V_a = 5.9 \text{ м/c}$;

χ - безразмерный параметр, для подполий с продухами определяется по формуле

$$\chi = \frac{A_z}{A_b} \frac{R_0}{R_z}, (5)$$

$$\chi = 112,24 / 451,4 \times 1,55 / 2,04 = 0,189$$

где A_z - площадь цоколя для подполий с продухами, $A_z=112,24~\text{m}^2;$ R_z - сопротивление теплопередаче цоколя, $R_z=2,04~\text{m}^2\cdot ^\circ\text{C/Bt};$

 ξ - параметр, учитывающий влияние расположенных в подполье коммуникаций на его тепловой режим, °C, определяемый по формуле:

$$\xi = \frac{R_0}{A_b t_y} \sum_{j=1}^{j=n} \frac{l_{p,j}}{R_{p,j}} (T_{p,j} - T_{c,a}) t_{p,j}$$
, (6)

где n - число трубопроводов;

 $l_{p,j}$ - длина j-го трубопровода, общая протяженность трубопроводов $l_{p,j}\!=\!36$ м;

 $T_{p,j}$ - температура теплоносителя в j-м трубопроводе, $T_{p,j} = 90 \, ^{\circ}\mathrm{C};$

t_{р.j} - время работы j-го трубопровода в течение года, 365 сут;

t_у - продолжительность года, равная 365 сут;

 $R_{p,i}$ - сопротивление теплопередаче теплоизоляции j-го трубопровода, 0,54 м·°С/Вт;

 χ_i - коэффициент потери напора на отдельных участках подполья, принимаемый по таблице 3.

$$\xi = (1,55 / (451,4 \times 365)) \times (36 / 0,54) \times (90 - (-10,19)) \times 365 = 22,9 \, ^{\circ}\text{C}$$

Таблица 3 - Коэффициент χ_i

Участок подполья	χi
Вход с сужением потока	0,50
Жалюзийная решетка	2,00
Поворот потока на 90°	1,32
Вход с расширением потока	0,64

$$M = 1.5 \text{ x} \quad \underline{((-5) - (-10.19) - ((-10.19) - (-9.8)) \text{ x } 0.189 + 22.9} \text{ x } \sqrt{1+8} = 0.00511$$

$$0.77 \text{ x } 1.55 \text{ x } 1300 \text{ x } 0.374 \text{ x } 5.9 \text{ x } ((-5) - (-9.8))$$

Модуль вентилирования возрастает на следующий коэффициент:

0.00511 / 0.001861 = 2.746

Принимаем – коэффициент возрастания модуля вентилирования - 3.

Следовательно, для обеспечения расчётной температуры воздуха в подполье (сохранения подполья в мёрзлом состоянии) необходимо увеличить количество продухов в 3 раза.

Существующее количество продухов – 4 шт.

 $4 \times 3 = 12$ продухов.

Необходимо запроектировать дополнительно 8 продухов к 4-м существующим.

 $12 \times 0.21 = 2.52 \text{ м}^2$ – общая площадь проектируемых и существующих продухов (12 шт.)

 $8 \times 0.21 = 1.68 \text{ м}^2$ – общая площадь проектируемых продухов (8 шт.)