«Мероприятия по обеспечению соблюдения требований энергетической эффективности и требований оснащенности зданий, строений и сооружений приборами учета используемых энергетических ресурсов»

1. ОБЩАЯ ЧАСТЬ

Настоящий раздел Проекта разработан в связи с требованиями Федерального закона Российской Федерации от 23 ноября 2009г. №261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» и СНиП 23-02-2003 «'Тепловая защита зданий»

При разработке тома учтены требования следующих нормативных документов:

СНиП 2.08.02-89* "Общественные здания и сооружения"

СНиП 23-01-99* "Строительная климатология"

СНиП 23-02-2003 "Тепловая защита зданий"

СНиП 41.01-2003 "Отопление, вентиляция и кондиционирование"

изд. 2003г.

СНиП 2.04.07-89* "Тепловые сети"

СНиП 2.04.01-85* "Внутренний водопровод и канализация зданий"

СНиП 2.04.02-84 "Внутренний водопровод и канализация зданий"

Принятые при разработке Проекта решения преследуют цель рационального использования энергетических ресурсов при обеспечении комфортных условий пребывания людей в строящихся зданиях.

ZHB											
Взам											
Полпись и дата											
	Ē										
		Изм.	Кол.уч	Лист	N док.	Подп.	Дата				
-	<u>:</u>								Стадия	Лист	Листов
No oN	1	ГИП							П	1	39
و ا	ļ	Нач.от	.ACO					Пояснительная записка			
ZHB		Архитектор									
	`										

2. АРХИТЕКТУРНО-ПЛАНИРОВОЧНЫЕ И КОНСТРУКТИВНЫЕ РЕШЕНИЯ

Объемно-планировочное решение принято с учетом размеров и формы землеотвода, обусловлено необходимостью, соблюдения нормативных требований и функционально-технологических особенностей проектируемого объекта.

Офисно- складской комплекс предназначен для приема, хранения и отправки потребителям электротехнических товаров: электроламп, электроустановочных изделий, осветительной арматуры, мелкой бытовой техники.

Здание комплекса состоит из 2-х основных объемов: складской части и блока административно-бытовых помещений, разделенных противопожарной стеной 1 типа. Складская часть расположена на отметках: -5,280 (подвальный этаж), 0,000 (1 этаж) и + 6,395 (антресольный этаж). Административно-бытовая часть здания выполнена 4-х этажной с подвальным этажом. Высота этажа 3,3 м. Высота подвального этажа 4,5 м. Главный вход в здание предусмотрен через административно-бытовую часть. Вход в складскую часть осуществляется через вестибюль АБК, а также через обособленный вход в осях 6-7/А.

Наружные стены складской части здания выполнены из сэндвич-панелей заводской готовности. В качестве утеплителя предусмотрены негорючие минераловатные плиты повышенной жесткости, толщиной 120 мм. Наружные стены административно-бытового комплекса выполнены из блоков ячеистого бетона плотностью не менее 600 кг/м3. В качестве утеплителя предусмотрены негорючие минераловатные плиты плотностью 90 кг/м3 толщиной 120 мм.

Оконные витражные конструкции, теплоизолирующий стальной и ПВХ-профиль поставляются заводом-изготовителем. Заполнением оконных проемов в части АБК служат двухкамерный стеклопакет, в складской части — однокамерный.

Кровля АБК выполнена по железобетонному перекрытию толщиной 180 мм, водоизоляционный ковер из рулонного битумно-полимерного гидроизоляционного материала Техноэласт, утеплитель минераловатные негорючие плиты РОКЛАЙТ толщиной 200 мм. Водосток внутренний. Кровля складской части — двускатная, выполнена из профнастила толщиной 35 мм по z-образному профилю с негорючим минераловатным утеплителем толщиной 150 мм.

3. РЕШЕНИЯ СИСТЕМ ИНЖЕНЕРНОГО ОБОРУДОВАНИЯ, ОБЕСПЕЧИВАЮЩИЕ ЭФФЕКТИВНОЕ ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

3.1. Отопление

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Подпись и дата │Взам. инв. №

Инв. № подл. | Подп

Теплоснабжение предусматривается от существующей котельной ООО "ВНИИГАЗ". Теплоноситель на вводе в здания принят из тех. условий - вода с параметрами 90°С -70°С. Ввод тепловых сетей осуществляется в помещение теплового пункта, расположенного в здании на отм. -5,28м.

Система отопления административно-бытового корпуса предусматривается двухтрубная, стояковая с разводкой магистралей в цокольном этаже.

Магистральные трубопроводы и стояки системы отопления прокладываются из труб стальных водогазопроводных по ГОСТ 3262-75* с уклоном не менее 0,003 в сторону ИТП, Поэтажная горизонтальная разводка и подводка к приборам выполняется из металлопластиковых труб фирмы "Сор1ре НЗ". В качестве нагревательных приборов приняты радиаторы биметаллические фирмы "Когаdo" с нижней и боковой подводкой. Регулирование теплоотдачи отопительных приборов осуществляется с помощью термостатических клапанов.

Удаление воздуха из системы отопления осуществляется через установку автоматических воз-

духовыпускных клапанов, монтируемых в верхних точках системы отопления.

Отопление складского корпуса на отм. 0.00 предусматривается приточной вентиляцией и рециркуляционными воздушно-отопительными агрегатами LEO FB 455, фирмы "Юнио-Вент", установленными на отм. +6.000 (со стороны балкона) и на отм. +10,000. Агрегаты состоят из вентилятора, калорифера и лопаток воздухораспределения. Система теплоснабжения отопительных агрегатов горизонтальная, двухтрубная. Магистральные трубопроводы прокладываются из труб стальных водогазопроводных по ГОСТ 3262-75* с уклоном не менее 0,003 в сторону ИТП. Отопление складского корпуса на отм. -5,280 осуществляется приточной вентиляцией. Нагретый воздух подается направленной струей вдоль проходов между стеллажами. Отопление бытовых помещений на отметке -5,280 осуществляется с помощью радиаторов биметаллических фирмы "Когаdo". Приборы размещаются вдоль наружных стен отапливаемых помещений.

Система отопления двухтрубная, стояковая с разводкой магистралей в цокольном этаже. Магистральные трубопроводы системы отопления прокладываются из труб стальных водогазопроводных по ГОСТ 3262-75* с уклоном не менее 0,003 в сторону ИТП, стояки и подводка к приборам выполняется из металлопластиковых труб. Горизонтальные участки труб должны огибать выступающие канализационные трубы, прикрепляемые к "черному" полу опоры сантехнического оборудования и т.д. Трубопроводы в местах пересечения перекрытий, внутренних стен и перегородок

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Инв. № подл.

следует прокладывать в гильзах из негорючих материалов. Заделку зазоров и отверстий в местах прокладки тру-

бопроводов следует предусматривать негорючими или горючими материалами, обеспечивающими нормируемый предел огнестойкости ограждений.

Расчетные наружные температуры приняты по СНиП 23-01-99, 41-01-2003:

-для отопления и вентиляции зимой

минус 28° С

-продолжительность отопительного периода

214 суток

-средняя температура отопительного периода

 $-3.1~^{0}$ C

Расчетные температуры воздуха в помещениях приняты: +18°C.

3.2 Вентиляция

В помещениях административно-бытового корпуса предусмотрена проточновытяжная вентиляция с механическим побуждением. Вентиляция рассчитана на нормативные воздухообмены в помещениях АБК. Приточный воздух подается приточными установками. Каждая приточная установка обслуживает свою группу помещений:

- П1 помещения административно-бытового назначения (офисы, помещение охраны, помещения для временного проживания и т.д.),
 - $\Pi 2$ офис 4-го этажа,
 - ПЗ спортзал, раздевалки;

Вытяжная вентиляция из отапливаемых помещений так же механическая.

Каждая вытяжная установка обслуживает свою группу помещений:

- В1 санузлы АБК;
- В2 помещения административно-бытового назначения (офисы, помещение охраны, помещения для временного проживания и т.д.)
 - ВЗ буфет и его вспомогательные помещения,
 - В4 спортзал, раздевалки;

Приточные И вытяжные установки оснащены шумоглушителями, позволяет не превышать нормированный уровень шума в вентилируемых помещениях. Горизонтальные воздуховоды прокладываются под потолком помещений. Воздуховоды систем вентиляции изготавливаются из оцинкованной стали в соответствии с нормативными требованиями ТУ36-736-93.

В складских помещениях на отм. 0,00 предусмотрена приточно-вытяжчая система вентиляции со смешанным побуждением и рециркуляцией (50%). Приток наружного

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

воздуха, осуществляемый вентустановкой П4, определен из расчета 6 м3/ч на 1 м2 площади помещения. Вытяжка воздуха из помещений - механическая, установкой В9. В складских помещениях, расположенных на отм. -5,280, приток и вытяжка механические. Вентиляция рассчитана на нормативное количество воздуха, подаваемого в помещение (1 крат). В складских помещениях расположены следующие установки:

П5 - приток в складские помещения на отм. -5,280 с рециркуляцией (50%),

В5, В6 - вытяжка из помещений на отм. - 5,280,

Вентиляционные установки приточных и вытяжных систем складских помещений на отм. -5,280 располагаются в вентиляционных камерах, расположенных на отм. - 5.280. Воздуховоды прокладываются под потолком обслуживаемых помещений.

В бытовых и технических помещениях, расположенных на отм. -5,280, приток и вытяжка механическая. Вентиляция рассчитана на нормативное количество воздуха, подаваемого в помещение.

Бытовке помещения обслуживают следующее установки:

П6 - приток в раздевалки, кабинеты, серверную. пост охраны, коридор.

В7 - вытяжка из раздевалок, кабинетов, серверной, пост охраны.

Вентиляционные установки приточных и вытяжных систем складских помещений на отм. -5,280 располагаются в вентиляционных камерах, расположенных на отм. - 5 280. Воздуховоды прокладываются под потолком обслуживаемых помещений.

3.3 Водоснабжение и канализация.

Хозяйственно-питьевое водоснабжение офисно-складского комплекса обеспечивается путем устройства ввода водопровода диаметром 250 мм в помещение насосной станции, от существующей камеры на сети водопровода диаметром 300мм, в соответствии с требованиями Технических условий "Видновского производственно-технического объединения городского хозяйства" N315 от 06.07.2010г.

Гарантированный напор в сети водоснабжения в соответствии с Техническими условиями на подключение к сети водопровода и канализации, составляет 10,0 м в часы максимального водопотребления.

Суммарный расход на вводе при пожаротушении составит 128,5 л/сек (3,50 л/сек максимальный расход на хозяйственно-питьевые нужды;3 х 5 л/с расход воды на пожарные краны; 110 л/с расход спринклерной системой). Максимальная скорость на вводе водопровода в здание составляет порядка 2.40 м/с.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Проектом предусматривается устройство водомерного узла. К установке принят водомерный узел со счетчиком диаметром 50 мм. Счетчик рассчитан на пропуск максимального хозяйственно-питьевого расхода, устанавливается у первой наружной стены на вводе здание в помещении насосной станции. На обводной линии устанавливается задвижка. Потери на счетчике при пропуске максимального хозяйственно-питьевого расхода составят 1,75 м.

СИСТЕМА БЫТОВОЙ КАНАЛИЗАЦИИ.

Проектируемое здание складского комплекса оборудуется системой бытовой канализации для отведения стоков от санузлов и душевых с присоединением выпусков к внутриплощадочным сетям хозяйственно-бытовой канализации.

Общий расход бытовых стоков	3.5+1.6	4.96	7.10
проектируемого здания составляет:	л/с	куб.м/час	куб.м/сут

Отведение стоков от приборов, расположенных в подвале выполнено с помощью комплектных канализационных станций фирмы Grundfos, установленных на отм.-5,280 "009", "012" и "031".

К установке приняты:

- комплектная КНС типа Sololift PWC-3 (Q=1,2л/c,H=7,0м,N=0,67кВт) 2 шт.
- комплектная КНС типа MD 24.3.2 (Q=4.2л/c,H=11,0м,N=3,0кВт)- 1 шт.

Прокладка канализационных стояков из труб полипропиленовых канализационных предусмотрена скрыто: в монтажных коммуникационных шахтах, ограждающие конструкции которых выполнены из несгораемых материалов. При этом, против ревизий и прочисток необходимо предусмотрены открывающиеся люки с размером не менее 30х40 см.

Вентиляция системы бытовой канализации предусмотрена через стояки, вытяжная часть которых составляет 0,3 м от поверхности кровли. Система бытовой канализации выполнена — из труб полиэтиленовых канализационных ТУ 6-19-231-83 диаметром 50-110 мм;

СИСТЕМА ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ

В здании офисно-складского комплекса предусматривается система горячего водоснабжения. Источником горячего водоснабжения являются проектируемое ИТП, расположенное на -1-ом этаже. Система горячего водоснабжения принята аналогично системе холодного водоснабжения — тупиковой, с нижней разводкой, и циркуляцией по магистралям и стоякам. Учет расхода воды в системе на горячего водоснабжения, осуществляется оборудованием ИТП.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Потребный напор в системе горячего водоснабжения, обеспечивается давлением в системе хозяйственно-питьевого водоснабжения.

Общее количество тепла на горячее водоснабжения складского комплекса составляет: Wчас= 0,18 Гкал/час,

Расход воды на горячее водоснабжение	1,59	3,46	4,22
проектируемого здания составит:	л/с	куб.м/час	куб,м/сут

Система горячего водоснабжения принята тупиковой, с нижней разводкой. Магистральные трубопроводы системы горячего водоснабжения прокладываются под потолком 1-ого этажа. Система горячего водоснабжения запроектирована из полиэтиленовых водопроводных труб ПЭ 80 по ГОСТ 18599-01.

Все трубопроводы системы горячего водоснабжения покрываются тепловой и антикоррозионной изоляцией в соответствии с требованиями СНиП 2.04.01-85*.

3.4 Электроснабжение.

Электроснабжение комплекса осуществляется от ТП (присоединение установленной мощности 410,0 кВт; единовременной нагрузки 307,4 кВА),

Питание электрооборудования и освещения осуществляется от Главного Распределительного Щита (ГРЩ) расположенного в подвале в помещении электрощитовой №028, с секциями сборных шин и с устройством автоматического включения резерва.

Установленная мощность ГРЩ-0,4 кВ Ввод №1 составляет 159,3 кВт (380/220В). Расчетная мощность ГРЩ -0,4 кВ Ввод №1 131,9 кВт (380/220В).

Расчетный ток проектируемого электрооборудования составляет 229,4 А

 $\cos \varphi = 0.87$;

(380/220B);

Коэффициент спроса принимается 0,83.

Установленная мощность ГРЩ -0,4 кВ Ввод №2 составляет 165,0 кВт (380/220В).

Расчетная мощность ГРЩ -0,4 кВ Ввод №2 составляет 139,5 кВт (380/220В).

Расчетный ток проектируемого электрооборудования составляет 237,7 A (380/220B);

 $\cos \varphi = 0.89$;

Коэффициент спроса принимается 0,85.

Схема электроснабжения.

По степени надежности электроснабжения электроустановки потребителей

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

электроэнергии Офисно-складского комплекса относится к III-ой категории согласно требований ПУЭ. Из общего состава потребителей здания выделяются электроприемники I-ой категории.

Расчеты электрических нагрузок "Офисно-складского комплекса".

Электрическая сеть для питания оборудования и освещения принята пятитрехпроводной, система заземления TN-C-S согласно ГОСТ 30331.2-95 (электроустановки зданий. Часть 3. Основные характеристики). Электроснабжение здания осуществляется по двум взаиморезервируемым

вводам ОТ ТΠ c устройством автоматического включения резерва. Распределительная сеть от ГРЩ к распределительным устройствам (ЩО, ЩОА, ЩОЭ, ЩВ) отдельными кабельными выполнена трассами (см. расчетную Электроснабжение потребителей выполнено от этажных щитов электроснабжения). (ЩОЭ, ЩОА), которые подключены к соответствующим щитам ГРЩ и ВРУ. Все щиты приняты производства фирмы «АВВ», которые укомплектовываются автоматическими выключателями с термомагнитными расцепителями тока.

Общая установленная мощность электрооборудования составила 324,3 кВт.

ный режим).											
Наименование потребителя	Установ- ленная мощность. кВт	Ко- эфф. спро- са, Кс	Расчет- ная мощ- ность, кВт	Коэфф. мощно- ети cos(ф)	Установ- ленная мощность кВА	Расчет- ная мощ- ность, кВА	Уста- новлен- ный ток А	Расчет чет- ный ток А			
Розетоные сети	18,0	0,50	9,0	0,9	20,22	10,0	30,7	15,2			
Рабочее освеще- ние	73,3	0,80	58,64	0,87	84,0	67,20	127,66	102,13			
Аварийное осве- щение	25,7	1,00	25,7	0,87	29,6	29,6	45,0	45,0			
Подъемники	10,0	1,00	10,0	0,85	11,76	11,76	17,87	17,87			
Тепловой пункт	6,5	1,00	6,5	0,90	7,2	7,2	11,0	11,0			
Тепловые завесы	9,54	0,85	8,1	0,90	10,6	9,0	16,11	13,67			
Вентиляция	25,96	0,85	22,1	0,85	30,5	26,0	46,35	39,51			
Насосы (хоз, дре- нажн.)	1,1	1,00	1,1	0,85	1,3	1,3	1,96	1,96			
Силовое о борудо- вание	15,83	0,80	12,66	0,85	18,62	14,9	28,3	13,68			
Зарядные устрой- ства	30,6	0,85	26,0	0,9	34,0	28,9	51,67	43,92			
ВРУ АБК	107,8	0,9	96,9	0,9	120,5	108,0	183,13	164,13			
Общая установ- ленная мощность	324,3	0,84	271,4	0,88	368,52	308,41	560,1	467,2			

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ.

Технические решения, принятые в рабочих чертежах, соответствуют требованиям норм и правил, действующих на территории РФ, и обеспечивают безопасную для жизни

							Ли
	Изм.	Кол.уч	Лист	N док.	Подп.	Дата	'

а Взам. инв. N

Подпись и дата

Инв. Nº подл. | Под

и здоровья людей эксплуатацию объекта при соблюдении предусмотренных рабочими чертежами мероприятий.

- Напряжение питающей сети 380/220B при заземленной нейтрали трансформаторов

На объекте предусматриваются два вида освещения:

- рабочее на напряжении 220В;
- аварийное на напряжении 220В;

Управление электроосвещением предусматривается:

- в офисах и технических помещениях индивидуальными выключателями;
- в складских помещениях с кнопочных постов управления и датчиками движения.

Управление аварийным освещением выполнить:

- в офисах и технических помещениях индивидуальными выключателями
- в коридорах индивидуальными выключателями
- для световых указателей «Выход» непосредственно со щита аварийного освещения
 - аварийное освещение складских помещений при помощи кнопочных постов

Управление наружным освещением для светильников, установленных на кровле, осуществляется от датчика освещенности в автоматическом режиме или с кнопочного поста управления из комнаты охраны в режиме ручного управления. Сумеречный датчик установить на северной стороне здания с защитой от попадания прямых лучей света. В проекте в основном используются светильники отечественного производства. Для освещения складской зоны используются промышленные светильники со степенью защиты IP 65 с натриевыми лампами. Для складского помещения подвала выбраны светильники с люминесцентными лампами. Групповые осветительные сети выполняются кабелем ВВГнг-LS с двойной изоляцией и прокладываются:

-открыто на лотках по строительным конструкциям

- в коридорах и помещениях в гладкостенных трубах и коробах из самозатухающего ПВХ (ГОСТ 50827-95, имеющего сертификат пожарной безопасности НПБ-246-97). Опуски к выключателям выполняются на клипсах в гофрированных трубах ПВХ. Расцветка жил кабеля должна быть:
 - нулевого (N) рабочего проводника голубого (синего) цвета;
 - защитного (РЕ) проводника двуцветной комбинации зелено-желтого цвета;
- фазных проводов черного, коричневого, красного, фиолетового, серого, оранжевого, бирюзового цветов.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Проектом предусмотрено создание рабочего и аварийного освещения технических помещений исходя из назначения и типа каждого помещения.

4. Энергосберегающие мероприятия

В целях повышения эффективности использования топливно-энергетических ресурсов, экономии тепла, учета и контроля за потреблением энергоресурсов предусмотрено:

- применение автоматического регулирования систем отопления, вентиляции, кондиционирования. Предусмотрено сочетание центрального качественного и индивидуального покомнатного регулирования в системах водяного отопления.
- утепление наружных стен и покрытия снаружи эффективным утеплителем
- установка приборов учета электроэнергии, тепла и воды;
- применение энергоэкономичных источников света.

5. ЭНЕРГЕТИЧЕСКИЕ ПОКАЗАТЕЛИ ЗДАНИЯ

- 5.1. Теплотехнические характеристики наружных ограждений
- 5.1.1. Наружные стены складской части здания:

Теплотехнические показатели однослойной конструкции:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели - Минераловатные плиты по ТУ 5762-004-45757203-99;; Вид материала - минераловатные и стекловолокнистые материалы):

- Плотность материала в сухом состоянии $r_0 = 110$ кг/м ³;
- Расчетный коэффициент теплопроводности $1 = 0.045 \text{ Br/(m}^{\circ}\text{C});$
- Расчетный коэффициент паропроницаемости m = 0,3 мг/(м ч Па);

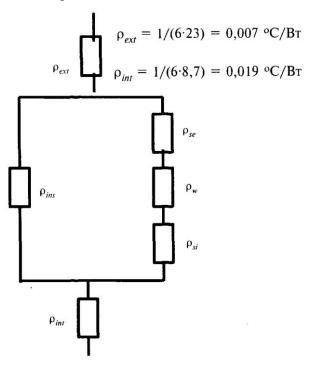
Результаты расчета:

Ззам. инв. №.

Изм. Кол.уч Лист N док. Подп. Дата

Лист

10


Ограждающая конструкция образована трехслойными панелями из листовых материалов шириной B=6 м, примыкающих торцами друг к другу. Панель выполнена из стальных оцинкованных облицовочных листов толщиной 1 мм, между которыми расположен слой утеплителя из минеральной ваты толщиной 120 мм. Торцы панели выполнены из того же стального листа без разрыва мостика холода.

Определить приведенное сопротивление теплопередаче R_{a}^{r} 1 м ограждения (L=1 м).

Порядок расчета

Расчет тепловых сопротивлений

1. По формуле $\rho_{ext} = 1 / (\alpha_{ext} A)$; $\rho_{int} = 1 / (\alpha_{int} A)$ найдем тепловое сопротивление по Поверхностей панели:

- 2. По формуле $\rho = 1/\left[2L\sqrt{(\alpha\lambda_m\delta)}th(\beta B/2)\right]-1/(A\alpha)$ найдем тепловое сопротивление общивок:
 - а) наружной

$$\beta_{ext} = \sqrt{\alpha_{ext} / (\lambda_m \delta_1)} = \sqrt{23 / (58 \cdot 0,001)} = 19,914 \text{ M}^{-1},$$

$$\rho_{se} = 1/\left[2 \cdot 1 \cdot \sqrt{23 \cdot 58 \cdot 0,001} \cdot th(19,914 \cdot 6/2)\right] - 1/(6 \cdot 23) = 0,426 \text{ °C/BT};$$

б) внутренней

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

$$\beta_{int} = \sqrt{8.7/(58 \cdot 0.001)} = 12,247 \text{ M}^{-1},$$

$$\rho_{si} = 1/\left[2 \cdot 1 \cdot \sqrt{8,7 \cdot 58 \cdot 0,001} \cdot th(12,247 \cdot 6/2)\right] - 1/(6 \cdot 8,7) = 0,685 \text{ °C/Bt}.$$

3. По формуле $\rho = h / (\lambda_m \delta L)$ найдем тепловое сопротивление стенки, образованной торцевыми листами:

$$\rho_w = 0.152 / (58 \cdot 0.002 \cdot 1) = 1.31 \, ^{\circ}\text{C/Bt}.$$

4. По формуле $\rho = h / (\lambda_{ins} BL)$ найдем тепловое сопротивление теплоизоляционного слоя:

$$\rho_{ins} = 0.12 / (0.045 \cdot 6 \cdot 1) = 0.444 \, ^{\circ}\text{C/Bt}.$$

Расчет цепи тепловых сопротивлений

1. Сумма последовательно соединенных тепловых сопротивлений правой ветви [формула $\rho' + \rho'' = \rho$, °С/Вт] равна:

$$\rho_m = \rho_{se} + \rho_w + \rho_{si} = 0.426 + 1.31 + 0.444 = 2.18 \,^{\circ}\text{C/Bt}.$$

2. Суммарное тепловое сопротивление параллельных ветвей по формуле (1 / р' + 1 / р" = 1 / ρ , Bт/°С) равно:

$$1 / \rho = 1 / \rho_m + 1 / \rho_{ins} = 1 / 2,18 + 1 / 0,444 = 2,71 \text{ BT/°C};$$

 $\rho = 1 / 2,013 = 0,369 \text{ °C/BT}.$

3. Результирующее приведенное сопротивление теплопередаче ограждения всей панели определим по формуле ($R_o = \rho A$, $M^{2.°}C/BT$.)

$$R_o^r = \rho_0 A = (\rho_{ext} + \rho'' + \rho_{int}) A = (0.007 + 0.369 + 0.019) 6 = 2.332 \text{ m}^2 \cdot \text{°C/Bt}.$$

5.1.2. Стены административно бытового корпуса:

Теплотехнические показатели слоя 1:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели -Газо- и пенобетон, газо- и пеносиликат; плотность 600 кг/м3; Вид материала слоя 1 - бетоны и растворы):

- Плотность материала в сухом состоянии слоя 1 $r_{01} = 600$ кг/м ³;
- Расчетный коэффициент теплопроводности слоя 1 11 = 0,26 Bt/(M° C);
- Расчетный коэффициент теплоусвоения слоя 1 s₁ = 3,91 B_T/(кв.м \cdot °C);
- Расчетный коэффициент паропроницаемости слоя 1 m₁ = 0,17 мг/(м ч Па);

Теплотехнические показатели слоя 2:

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Инв. № подл. Подпись и дата Взам. инв.

минераловатные плиты

- Плотность материала в сухом состоянии слоя 2 $r_{0}2 = 90$ кг/м 3 ;
- Расчетный коэффициент теплопроводности слоя 2 $12 = 0.045 \text{ Bt/(m}^{\circ}\text{C})$;
- Расчетный коэффициент паропроницаемости слоя 2 m₂ = 0,3 мг/(м ч Па);

Результаты расчета:

1) Теплотехнический расчет

Конструкция - несветопрозрачная.

2) Выбор показателей тепловой защиты здания

Тип здания или помещения - административные и бытовые.

Выбор требований тепловой защиты здания - по показателям "а" и "б" (без учета расхода тепловой энергии на отопление).

3) Продолжение расчета по п. 5.3

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$. 5 = -28 °C.

4) Определение сопротивления теплопередаче

Воздушная прослойка, вентилируемая наружным воздухом - отсутствует.

Тип конструкций - наружные стены.

Коэффициент теплоотдачи внутренней поверхности:

$$aint = 8.7 BT/(M^{2} °C)$$
.

По табл. 8 СП 23-101-2004:

Коэффициент теплоотдачи наружной поверхности:

$$a_{ext} = 23 \text{ BT/(M} ^{2} ^{\circ}\text{C}).$$

Конструкция - однородная.

Конструкция - многослойная.

5) Определение термического сопротивления конструкции с последовательно расположенными слоями

Замкнутая воздушная прослойка - отсутствует.

Количество слоев - 2.

6) Определение термического сопротивления для первого слоя

Толщина слоя:

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

$$d = d1 = 0.4 \text{ M}.$$

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 11 = 0.26 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 1:

$$R_1 = d/1 = 0.4/0.26 = 1.538 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

7) Определение термического сопротивления для второго слоя

Толщина слоя:

$$d = d2 = 0.12 \text{ M}.$$

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 12 = 0.045 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 2:

$$R_2 = d/1 = 0.12/0.045 = 2.667 \text{ (m } 2^{\circ}\text{C)/Bt}.$$

8) Продолжение расчета по п.9.1 СП 23-101

Термическое сопротивление ограждающей конструкции:

$$R_k = R_1 + R_2 = 1,538 + 2,667 = 4,205 \text{ (m } 2^{\circ}\text{C)/Bt.}$$

Приведенное сопротивление теплопередаче:

$$R_0 = 1/a_{int} + R_k + 1/a_{ext} = 1/8,7 + 4,205 + 1/23 = 4,363 \text{ (M } 2^{\circ}\text{C)/Bt}.$$

9) Определение расчетного температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

По табл. 6:

Коэффициент:

$$n = 1$$
.

Коэффициент теплоотдачи внутренней поверхности:

$$aint = 8.7 BT/(M^2 °C)$$
.

Расчетный температурный перепад:

$$D_{t0} = n (t_{int}-t_{ext})/(R_0 a_{int}) =$$

= 1 ·
$$(18-28)/(4,363 \cdot 8,7) = 1,212$$
 °C (формула (4); п. 5.8).

10) Влажностный режим помещения в холодный период года

T.k.
$$t_{int} = 18 \, ^{\circ}C > 12 \, ^{\circ}C$$
 w $t_{int} = 18 \, ^{\circ}C < = 24 \, ^{\circ}C$; $f_{int} < = 60 \, \%$:

Следовательно по табл. 1 влажностный режим - сухой или нормальный.

11) Продолжение расчета по табл. 5

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

подл. Подпись и дата Взам. инв.

Инв. №

Т.к. влажностный режим помещения - сухой или нормальный:

Тип здания или помещения - административные и бытовые, за исключением помещений с влажным или мокрым режимом.

Нормируемый температурный перепад принимается по табл. 5 $D_{tn} = 4.5$ °C.

12) Продолжение расчета по п. 5.8

 $D_{t0} = 1,212 \text{ °C} < = D_{tn} = 4,5 \text{ °C} (26,933\% \text{ от предельного значения})$ - условие выполнено.

13) Продолжение расчета по п. 5.3

Эксплуатация здания - постоянная.

T.k. $t_{int} > 12$ °C:

Средняя температура наружного воздуха:

$$t_{ht} = t_{ht}$$
, $8 = -3.1 \, ^{\circ}$ C.

Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr.}$

Градусо-сутки отопительного периода:

$$D_d = (t_{int}-t_{ht}) z_{ht} = (18-3,1) \cdot 214 = 4515,4$$
 °C сут (формула (2); п. 5.3).

Тип конструкций - стены.

Требуемое приведенное сопротивление теплопередаче конструкции принимается по табл. 4 в зависимости от D_d

$$R_{req} = 2,555 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

 R_0 = 4,363 (м 2 °C)/ B_T > = R_{req} = 2,555 (м 2 °C)/ B_T (170,763% от предельного значения) - условие выполнено.

14) Определение температуры внутренней поверхности однородной однослойной или многослойной ограждающей конструкции с однородными слоями

Расчетная температура наружного воздуха в холодный период:

$$t_{ext} = t_{ext}$$
, $5 = -28$ °C.

Температура внутренней поверхности ограждающей конструкции:

$$t_{si} = t_{int}-n (t_{int}-t_{ext})/(R_o a_{int}) =$$

$$= 18-1 \cdot (18-28)/(4,363 \cdot 8,7) = 16,788 \, ^{\circ}\text{C}.$$

Температура точки росы по прил. 2 Руководства по теплотехническому расчету и проектированию ограждающих конструкций зданий НИИСФ (М., 1985) принимается по табл прил. Р СП 23-101 в зависимости от tint и fint

$$t_d = 8,83 \, ^{\circ}\text{C}$$
.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

5.1.3 Наружные стены цокольной части здания

Теплотехнические показатели слоя 1:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели - Железобетон (ГОСТ 26633); плотность 2500 кг/м3; Вид материала слоя 1 - бетоны и растворы):

- Плотность материала в сухом состоянии слоя 1 $r_{01} = 2500$ кг/м 3 ;
- Расчетный коэффициент теплопроводности слоя 1 $1_1 = 2,04 \text{ Bt/(m}^{\circ}\text{C});$
- Расчетный коэффициент теплоусвоения слоя 1 s₁ = 18,95 Bt/(кв.м \cdot °C);
- Расчетный коэффициент паропроницаемости слоя 1 $m_1 = 0.03 \text{ мг/(м ч Па)};$

Теплотехнические показатели слоя 2:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели - Экструзионный пенополистирол «Пеноплэкс» (ТУ 5767002-46261013); плотность 35 кг/м3; Вид материала слоя 2 - полимерные теплоизоляционные материалы):

- Плотность материала в сухом состоянии слоя 2 $r_{02} = 35 \text{ кг/м}^3$;
- Расчетный коэффициент теплопроводности слоя 2 $12 = 0.03 \text{ Br/(m}^{\circ}\text{C});$
- Расчетный коэффициент теплоусвоения слоя 2 s2 = 0,37 Bт/(кв.м \cdot °C);
- Расчетный коэффициент паропроницаемости слоя 2 m₂ = 0,018 мг/(м ч Па);

<u>Результаты расчета</u>:

1) Теплотехнический расчет

Конструкция - несветопрозрачная.

2) Выбор показателей тепловой защиты здания

Тип здания или помещения - административные и бытовые.

Выбор требований тепловой защиты здания - по показателям "а" и "б" (без учета расхода тепловой энергии на отопление).

3) Продолжение расчета по п. 5.3

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$. 5 = -28 °C.

4) Определение сопротивления теплопередаче

Воздушная прослойка, вентилируемая наружным воздухом - отсутствует.

Тип конструкций - наружные стены.

Взам. инв.	
Подпись и дата	
Инв. № подл.	

흿

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Инв. № подл. Подпись и дата Взам. инв. №

Коэффициент теплоотдачи внутренней поверхности:

$$aint = 8.7 BT/(M^{2} °C)$$
.

По табл. 8 СП 23-101-2004:

Коэффициент теплоотдачи наружной поверхности:

$$a_{ext} = 23 \text{ BT/(M} 2^{\circ}\text{C}).$$

Конструкция - однородная.

Конструкция - многослойная.

5) Определение термического сопротивления конструкции с последовательно расположенными слоями

Замкнутая воздушная прослойка - отсутствует.

Количество слоев - 2.

6) Определение термического сопротивления для первого слоя

Толщина слоя:

$$d = d1 = 0.5 \text{ M}.$$

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 11 = 2.04 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 1:

$$R_1 = d/1 = 0.5/2.04 = 0.245 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

7) Определение термического сопротивления для второго слоя

Толщина слоя:

$$d = d2 = 0.1 \text{ M}.$$

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 12 = 0.03 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 2:

$$R_2 = d/1 = 0.1/0.03 = 3.333 \text{ (m } 2^{\circ}\text{C)/Bt}.$$

8) Продолжение расчета по п.9.1 СП 23-101

Термическое сопротивление ограждающей конструкции:

$$R_k = R_1 + R_2 = 0.245 + 3.333 = 3.578 \text{ (m } 2^{\circ}\text{C)/Bt}.$$

Приведенное сопротивление теплопередаче:

$$R_0 = 1/a_{int} + R_k + 1/a_{ext} = 1/8,7 + 3,578 + 1/23 = 3,736 \text{ (M } 2^{\circ}\text{C)/Bt}.$$

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

9) Определение расчетного температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

По табл. 6:

Коэффициент:

$$n = 1$$
.

Коэффициент теплоотдачи внутренней поверхности:

$$aint = 8.7 BT/(M^{2} °C)$$
.

Расчетный температурный перепад:

$$D_{t0} = n \text{ (tint-text)/(R}_{0} \text{ aint)} =$$

= 1 · (18--28)/(3,736 · 8,7) = 1,415 °C (формула (4); п. 5.8).

10) Влажностный режим помещения в холодный период года

Т.к.
$$t_{int} = 18 \, ^{\circ}\text{C} > 12 \, ^{\circ}\text{C}$$
 и $t_{int} = 18 \, ^{\circ}\text{C} < = 24 \, ^{\circ}\text{C}$; $f_{int} < = 60 \, \%$:

Следовательно по табл. 1 влажностный режим - сухой или нормальный.

11) Продолжение расчета по табл. 5

Т.к. влажностный режим помещения - сухой или нормальный:

Тип здания или помещения - административные и бытовые, за исключением помещений с влажным или мокрым режимом.

Нормируемый температурный перепад принимается по табл. 5 $D_{tn} = 4.5$ °C.

12) Продолжение расчета по п. 5.8

$$D_{t0} = 1.415 \, ^{\circ}\text{C} < = \, D_{tn} = 4.5 \, ^{\circ}\text{C} \, (31.444\% \, \text{от предельного значения})$$
 - условие выполнено.

13) Продолжение расчета по п. 5.3

Эксплуатация здания - постоянная.

T.k. $t_{int} > 12$ °C:

Средняя температура наружного воздуха:

$$t_{ht} = t_{ht}$$
, $8 = -3,1$ °C.

Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr}$.

Градусо-сутки отопительного периода:

$$D_d = (t_{int}-t_{ht}) z_{ht} = (18-3,1) \cdot 214 = 4515,4$$
 °C сут (формула (2); п. 5.3).

Тип конструкций - стены.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Подпись и дата Взам. инв.

Инв. № подл. | Подпи

Требуемое приведенное сопротивление теплопередаче конструкции принимается по табл. 4 в зависимости от D_d

$$R_{req} = 2,555 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

 R_{O} = 3,736 (м 2 °C)/ B_{T} > = R_{req} = 2,555 (м 2 °C)/ B_{T} (146,223% от предельного значения) - условие выполнено.

14) Определение температуры внутренней поверхности однородной однослойной или многослойной ограждающей конструкции с однородными слоями

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$. 5 = -28 °C.

Температура внутренней поверхности ограждающей конструкции:

$$t_{Si} = t_{int}-n (t_{int}-t_{ext})/(R_0 \text{ aint}) =$$

= 18-1 \cdot (18--28)/(3,736 \cdot 8,7) = 16,585 \cdot C.

Температура точки росы по прил. 2 Руководства по теплотехническому расчету и проектированию ограждающих конструкций зданий НИИСФ (М., 1985) принимается по табл. прил. Р СП 23-101 в зависимости от t_{int} и f_{int} $t_{d} = 8.83$ °C.

 $t_{si} = 16,585$ °C > = $t_d = 8,83$ °C (187,826% от предельного значения) - условие выполнено.

5.1.4 Среднее сопротивление теплопередачи наружных стен

Среднее сопротивление теплопередачи ограждающих конструкций расчитывается по формуле:

$$R_o^r = A / \sum_{i=1}^m \left(A_i / R_{o,i}^r \right)$$
 в зависимомти от площади зон.

$$R_f^r = 4865/(3950/2.33 + 541/4.36 + 374/3.73) = 2.53 \text{ m}^{20}\text{C/Bt}.$$

5.1.5 Ограждения контактирующие с грунтом

Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности $1 \pm 1,2$ Вт/(м·°С), называются неутепленными. Сопротивление теплопередаче такого пола принято обозначать $R_{\rm H.R.}$, м²·°С/Вт. Для каждой зоны неутепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

зона I -
$$R_{\rm I}$$
 = 2,1 м²·°C/Вт;
зона II - $R_{\rm II}$ = 4,3 м²·°C/Вт;

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

га ∣Взам. инв. №

Подпись и дата Вза

Инв. № подл. Подпись

зона III - $R_{\text{III}} = 8,6 \text{ м}^2 \cdot {^{\circ}\text{C/BT}};$

зона IV -
$$R_{IV} = 14,2 \text{ м}^2. \circ \text{C/Bt}.$$

Приведенное сопротивление теплопередачи ограждений по грунту расчитывается по формуле:

$$R_o^r = A / \sum_{i=1}^m \left(A_i / R_{o,i}^r \right)$$
 в зависимомти от площади зон.

Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче $R_{y.п}$, м². °C/Вт, определяется по формуле:

$$R_{\rm y\pi} = R_{\rm H\pi} + \sum \frac{\delta_{\rm yc}}{\lambda_{\rm yc}},$$

В проектируемом здании есть как утепляемые, так и не утепляемые ограждения контактирующие с грунтом.

Приведенное сопротивление теплопередачи ограждений по грунту с утепляющим слоем:

$$R_{y\pi 1}=2.1+0.1/0.035=4.95$$
 м²⁰С/Вт.(для 1-й зоны);

$$R_{\text{уп}2}$$
=4.3+0.1/0.035=7.15 м²°C/Вт.(для 2-й зоны);

Приведенное сопротивление теплопередачи ограждений по грунту без утепляющего слоя:

$$R_f^r = 2888/(574/8.6 + 2314/14.2) = 12.57 \text{ m}^{20}\text{C/Bt}.$$

Приведенное сопротивление теплопередачи ограждений по грунту общее:

$$R_{o6}$$
=4078/(601/4.95+589/7.15+574/8.6+2314/14.2)=9.4 M^{20} C/BT.

5.1.6 Покрытие над административной частью здания

Теплотехнические показатели слоя 1:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели - Железобетон (ГОСТ 26633); плотность 2500 кг/м3; Вид материала слоя 1 - бетоны и растворы):

- Плотность материала в сухом состоянии слоя 1 $r_{01} = 2500$ кг/м 3 ;
- Расчетный коэффициент теплопроводности слоя 1 11 = 2,04 Bt/(м°С);
- Расчетный коэффициент теплоусвоения слоя 1 s1 = 18,95 Bt/(кв.м \cdot °C);
- Расчетный коэффициент паропроницаемости слоя 1 $m_1 = 0.03 \text{ мг/(м ч Па)};$

Теплотехнические показатели слоя 2:

Минераловатные плиты «РОКЛАЙТ»

- Плотность материала в сухом состоянии слоя 2 $r_{02} = 30$ кг/м 3 ;
- Расчетный коэффициент теплопроводности слоя 2 $12 = 0.041 \text{ Bt/(m}^{\circ}\text{C)}$;
- Расчетный коэффициент паропроницаемости слоя 2 $m_2 = 0.36 \text{ мг/(м ч Па)};$

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Конструкция - несветопрозрачная.

2) Выбор показателей тепловой защиты здания

Тип здания или помещения - административные и бытовые.

Выбор требований тепловой защиты здания - по показателям "а" и "б" (без учета расхода тепловой энергии на отопление).

3) Продолжение расчета по п. 5.3

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$, 5 = -28 °C.

4) Определение сопротивления теплопередаче

Воздушная прослойка, вентилируемая наружным воздухом - отсутствует.

Тип конструкций - покрытия.

Внутреняя поверхность ограждающих конструкций - гладкие потолки.

Коэффициент теплоотдачи внутренней поверхности принимается по табл. 7 $a_{int} = 8.7 \; B_T/(M^2 ^\circ C)$.

По табл. 8 СП 23-101-2004:

Коэффициент теплоотдачи наружной поверхности: $aext = 23 \text{ Bt/(M} 2^{\circ}\text{C}).$

Конструкция - однородная.

Конструкция - многослойная.

5) Определение термического сопротивления конструкции с последовательно расположенными слоями

Замкнутая воздушная прослойка - отсутствует.

Количество слоев - 2

6) Определение термического сопротивления для первого слоя

Толщина слоя:

$$d = d1 = 0.18 \text{ M}.$$

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 11 = 2,04 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 1:

$$R_1 = d/1 = 0.18/2.04 = 0.088 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

7) Определение термического сопротивления для второго слоя

Толщина слоя:

$$d = d2 = 0.2 \text{ M}.$$

Расчетный коэффициент теплопроводности материала слоя:

$$1 = 12 = 0.041 \text{ BT/(M}^{\circ}\text{C}).$$

Сопротивление теплопередаче слоя 2:

$$R_2 = d/1 = 0.2/0.041 = 4.878 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

8) Продолжение расчета по п.9.1 СП 23-101

Термическое сопротивление ограждающей конструкции:

$$R_k = R_1 + R_2 = 0.088 + 4.878 = 4.966 \text{ (m } 2^{\circ}\text{C)/Bt.}$$

Приведенное сопротивление теплопередаче:

$$R_0 = 1/a_{int} + R_k + 1/a_{ext} = 1/8,7 + 4,966 + 1/23 = 5,124 \text{ (M } 2^{\circ}\text{C)/Bt}.$$

9) Определение расчетного температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Коэффициент:

$$n = 1$$
.

Коэффициент теплоотдачи внутренней поверхности принимается по табл. 7 $a_{int} = 8.7 \; BT/(M^2 ^{\circ}C)$.

Расчетный температурный перепад:

$$D_{t0} = n \text{ (tint-text)/(R}_0 \text{ aint)} =$$

= 1 · (18--28)/(5,124 · 8,7) = 1,032 °C (формула (4); п. 5.8).

10) Влажностный режим помещения в холодный период года

Т.к.
$$t_{int} = 18 \, ^{\circ}\text{C} > 12 \, ^{\circ}\text{C}$$
 и $t_{int} = 18 \, ^{\circ}\text{C} < = 24 \, ^{\circ}\text{C}$; $f_{int} < = 60 \, \%$:

Следовательно по табл. 1 влажностный режим - сухой или нормальный.

11) Продолжение расчета по табл. 5

Т.к. влажностный режим помещения - сухой или нормальный:

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Тип здания или помещения - административные и бытовые, за исключением помещений с влажным или мокрым режимом.

Нормируемый температурный перепад принимается по табл. 5 $D_{tn} = 4$ °C.

12) Продолжение расчета по п. 5.8

 $D_{t0} = 1,032 \, ^{\circ}\text{C} < = \, D_{tn} = 4 \, ^{\circ}\text{C} \, (25,8\% \, \text{от предельного значения})$ - условие выполнено.

13) Продолжение расчета по п. 5.3

Эксплуатация здания - постоянная.

T.k. $t_{int} > 12$ °C:

Средняя температура наружного воздуха:

$$t_{ht} = t_{ht}$$
, $8 = -3.1 \, ^{\circ}$ C.

Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr}$.

Градусо-сутки отопительного периода:

$$D_d = (t_{int}-t_{ht}) z_{ht} = (18-3,1) \cdot 214 = 4515,4$$
 °C сут (формула (2); п. 5.3).

Требуемое приведенное сопротивление теплопередаче конструкции принимается по табл. 4 в зависимости от D_d

$$R_{reg} = 3,406 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

 R_{O} = 5,124 (м 2 °C)/Bт > = R_{Teq} = 3,406 (м 2 °C)/Вт (150,44% от предельного значения) - условие выполнено.

14) Определение температуры внутренней поверхности однородной однослойной или многослойной ограждающей конструкции с однородными слоями

Расчетная температура наружного воздуха в холодный период:

$$t_{ext} = t_{ext}$$
, $5 = -28$ °C.

Температура внутренней поверхности ограждающей конструкции:

$$t_{Si} = t_{int} - n (t_{int} - t_{ext})/(R_0 a_{int}) =$$

$$= 18-1 \cdot (18-28)/(5,124 \cdot 8,7) = 16,968 \, ^{\circ}\text{C}.$$

Температура точки росы по прил. 2 Руководства по теплотехническому расчету и проектированию ограждающих конструкций зданий НИИСФ (М., 1985) принимается по табл прил. Р СП 23-101 в зависимости от t_{int} и t_{int}

$$t_d = 8,83 \, ^{\circ}\text{C}$$
.

$$t_{Si} = 16,968 \, ^{\circ}\text{C} > = t_{d} = 8,83 \, ^{\circ}\text{C} \, (192,163\% \, \text{от предельного значения})$$
 - условие выполнено.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

5.1.7. Покрытие над складской частью здания

Теплотехнические показатели слоя 1:

(Зона влажности - Нормальная; Условия эксплуатации - Б; Теплотехнические показатели - Железобетон (ГОСТ 26633); плотность 2500 кг/м3; Вид материала слоя 1 - бетоны и растворы):

- Плотность материала в сухом состоянии слоя 1 $r_{01} = 2500$ кг/м ³;
- Расчетный коэффициент теплопроводности слоя 1 1₁ = 2,04 Bt/(м°С);
- Расчетный коэффициент теплоусвоения слоя 1 s₁ = 18,95 Bt/(кв.м \cdot °C);
- Расчетный коэффициент паропроницаемости слоя 1 $m_1 = 0.03 \text{ мг/(м ч Па)};$

Теплотехнические показатели слоя 2:

Минераловатные плиты «РОКЛАЙТ»

- Плотность материала в сухом состоянии слоя 2 $r_{0}2 = 30$ кг/м ³;
- Расчетный коэффициент теплопроводности слоя 2 $12 = 0.041 \text{ Bt/(m}^{\circ}\text{C})$;
- Расчетный коэффициент паропроницаемости слоя 2 m₂ = 0,36 мг/(м ч Па);

Результаты расчета:

1) Теплотехнический расчет

Конструкция - несветопрозрачная.

2) Выбор показателей тепловой защиты здания

Тип здания или помещения - производственные.

3) Продолжение расчета по п. 5.3

Эксплуатация здания - постоянная.

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$, 5 = -28 °C.

4) Определение сопротивления теплопередаче

Воздушная прослойка, вентилируемая наружным воздухом - отсутствует.

Тип конструкций - покрытия.

Взам. инв.

Подпись и дата

Инв. № подл.

Внутреняя поверхность ограждающих конструкций - гладкие потолки.

Коэффициент теплоотдачи внутренней поверхности принимается по табл. 7 $a_{int} = 8.7 \; B_T/(M^2 \, ^{\circ}C)$.

По табл. 8 СП 23-101-2004:

Коэффициент теплоотдачи наружной поверхности: $aext = 23 BT/(M^2 C)$.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Инв. № подл. Подпись и дата Взам. инв.

Конструкция - однородная.

Конструкция - однослойная.

Термическое сопротивление ограждающей конструкции:

$$R_k = d/1 = 0.15/0.041 = 3.659$$
 (м 2° C)/Вт (формула (3); п. 9.1 СП 23-101).

Приведенное сопротивление теплопередаче:

$$R_0 = 1/a_{int} + R_k + 1/a_{ext} = 1/8,7 + 3,659 + 1/23 = 3,817 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

5) Определение расчетного температурного перепада между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции

Коэффициент:

$$n = 1$$
.

Коэффициент теплоотдачи внутренней поверхности принимается по табл. 7 $a_{int} = 8.7 \; BT/(M^2 ^{\circ}C)$.

Расчетный температурный перепад:

$$D_{t0} = n \text{ (tint-text)/(R}_{0} \text{ aint)} = 1 \cdot (18--28)/(3,817 \cdot 8,7) = 1,385 °C (формула (4); п. 5.8).$$

6) Влажностный режим помещения в холодный период года

Т.к.
$$t_{int} = 18 \, ^{\circ}\text{C} > 12 \, ^{\circ}\text{C}$$
 и $t_{int} = 18 \, ^{\circ}\text{C} < = 24 \, ^{\circ}\text{C}$; $f_{int} < = 60 \, \%$:

Следовательно по табл. 1 влажностный режим - сухой или нормальный.

7) Продолжение расчета по табл. 5

Т.к. влажностный режим помещения - сухой или нормальный:

T.K.
$$fint > 50 \%$$
:

Явные избытки тепла в здании (> 23 Вт/м3) - отсутствуют.

Нормируемый температурный перепад принимается по табл. 5 $D_{tn} = 6$ °C.

8) Продолжение расчета по п. 5.8

$$D_{t0} = 1{,}385 \, {}^{\circ}\text{C} < = \, D_{tn} = 6 \, {}^{\circ}\text{C} \, (23{,}083\% \, \text{от предельного значения})$$
 - условие выполнено.

9) Продолжение расчета по п. 5.3

Т.к.
$$t_{int} > 12$$
 °C:

Средняя температура наружного воздуха:

$$tht = tht. 8 = -3.1 \, ^{\circ}C.$$

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Взам. инв.

Подпись и дата

подл. 읟 ZHB. Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr}$.

Градусо-сутки отопительного периода:

$$D_d = (t_{int}-t_{ht}) z_{ht} = (18-3,1) \cdot 214 = 4515,4$$
 °C сут (формула (2); п. 5.3).

10) Влажностный режим помещения в холодный период года

Т.к.
$$t_{int} = 18 \, ^{\circ}\text{C} > 12 \, ^{\circ}\text{C}$$
 и $t_{int} = 18 \, ^{\circ}\text{C} < = 24 \, ^{\circ}\text{C}$; $f_{int} < = 60 \, \%$:

Следовательно по табл. 1 влажностный режим - сухой или нормальный.

11) Продолжение расчета по п. 5.3

Т.к. влажностный режим помещения - сухой или нормальный:

Требуемое приведенное сопротивление теплопередаче конструкции принимается по табл. 4 в зависимости от Dd

$$R_{req} = 2,629 \text{ (M } 2^{\circ}\text{C)/Bt.}$$

 $R_0 = 3.817 \text{ (м } 2^{\circ}\text{C})/\text{Bt} > = R_{\text{req}} = 2.629 \text{ (м } 2^{\circ}\text{C})/\text{Bt} \text{ (145,188% от предельного значения)}$ условие выполнено.

12) Определение температуры внутренней поверхности однородной однослойной или многослойной ограждающей конструкции с однородными слоями

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$, 5 = -28 °C.

Температура внутренней поверхности ограждающей конструкции:

$$t_{si} = t_{int}-n (t_{int}-t_{ext})/(R_0 \text{ aint}) =$$

= 18-1 \cdot (18--28)/(3,817 \cdot 8,7) = 16,615 \cdot C.

Температура точки росы по прил. 2 Руководства по теплотехническому расчету и проектированию ограждающих конструкций зданий НИИСФ (М., 1985) принимается по табл прил. Р СП 23-101 в зависимости от tint и fint $t_d = 8.83 \, ^{\circ}C$.

$$t_{Si} = 16,615$$
 °C > = $t_d = 8,83$ °C (188,165% от предельного значения) - условие выполнено.

5.1.8. Окна

Окна приняты двух типов: для складской части здания из однокамерного стеклопакета с твердым селективным покрытием в ПВХ переплетах, приведенное сопротивление теплопередаче окна - $R_{o,F}^{r} = 0.42 \text{ м}^{2o}\text{C/Bt} > R_{o,F}^{req} = 0.36\text{м}^{2o}\text{C/Bt}$; для административной части здания из двухкамерного стеклопакета селективным покрытием в ПВХ переплетах, приведенное сопротивление теплопередаче

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Подпись и дата Взам. инв.

Инв. Nº подл. Подпись и д

окна - $R_{o,F}^{r} = 0.56 \text{ м}^{2o}\text{C/Bt} > R_{o,F}^{req} = 0,42\text{м}^{2o}\text{C/Bt}$. Сопротивление воздухопроницанию окон не менее $R_{o,F}^{r} = 0,51 \text{ м}^{2}\text{ч/кг}$ при разности давлений 10 Па.

5.2. Воздухопроницаемость окна

Для окон при разности давлений 10 Па равно:

$$R_{a,F}^{req} = 1/G^{H*}(\Delta P_F/\Delta P_o)^{2/3} = 1/5*(35,49/10)^{2/3} = 0,46 \text{ м}^2 \text{ч/кг, где}$$
:

 G^H — нормативная воздухопроницаемость окна в металлических переплетах, равная $5 \kappa \Gamma(\mathsf{M}^2 \mathsf{q})$.

Фактическое сопротивление воздухопроницанию стеклопакета в пластиковых переплетах, по сертификату должно быть не менее $R_{a,F}{}^{r}=0.86~\text{м}^{2}\text{ч/к}_{\Gamma}>R_{a,F}{}^{req}=0.46~\text{м}^{2}\text{ч/к}_{\Gamma}.$

6 Проверка условий расхода тепловой энергии на отопление:

Результаты расчета:

1) Проверка условий расхода тепловой энергии на отопление (начало расчета)

Тип здания или помещения - административные и бытовые.

Средняя температура наружного воздуха:

$$t_{ht} = t_{ht}$$
, $8 = -3.1 \, ^{\circ}$ C.

Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr}$.

Градусо-сутки отопительного периода:

$$D_d = (t_{int}-t_{ht}) z_{ht} = (18-3,1) \cdot 214 = 4515,4$$
 °C сут (формула (2); п. 5.3).

2) Определение расчетного удельного расхода тепловой энергии на отопление зданий за отопительный период

Определение общих теплопотерь здания за отопительный период

Определение средней кратности воздухообмена здания за отопительный период

Вентиляция - механическая.

Число часов учета инфильтрации в течение недели:

$$n_{inf} = 168 - n_{V} = 168 - 168 = 0 \text{ ч}.$$

Количество приточного воздуха в здание:

$$L_{\rm V} = 36630 \text{ m}^{3/4}$$
.

Переплеты окон и дверей - одинарные.

Коэффициент учета влияния встречного теплового потока в светопрозрачных конструкциях:

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

и дата ∣Взам. инв. №

подл. Подпись и дата

Инв. №

```
k = 1.0 = 1.
```

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$, 5 = -28 °C.

Средняя плотность приточного воздуха за отопительный период:

$$r_a$$
 ht = 353/(273+0,5 (tint+text)) = = 353/(273+0,5 · (18+-28)) = 1,317 kg/m³.

Коэффициент снижения объема воздуха в здании: $b_V = 0.85$.

3) Определение количества инфильтрующегося воздуха в здание через неплотности заполнения проемов

Расчетная температура наружного воздуха в холодный период: $t_{ext} = t_{ext}$ 5 = -28 °C.

Удельный вес наружного воздуха:

$$g_{ext} = 3463/(273 + t_{ext}) = 3463/(273 + -28) = 14{,}135 \text{ H/м}$$
 (формула (14); прил. Г5).

Удельный вес внутреннего воздуха:

$$g_{int} = 3463/(273 + t_{int}) = 3463/(273 + 18) = 11.9 \text{ H/м}^3$$
 (формула (14); прил. Г5).

Разность давлений наружного и внутреннего воздуха для окон и дверей:

$$DPed = 0.28 \text{ H (gext-gint)} + 0.03 \text{ gext n } 2 =$$

= $0.28 \cdot 16.25 \cdot (14.135 - 11.9) + 0.03 \cdot 14.135 \cdot 4.9 \cdot 2 = 20.351 \Pi a$ (формула (13); прил. Γ 5).

Расчетную разность давлений наружного и внутреннего воздуха для окон и дверей определяют по формуле (13) с заменой в ней величины 0,55 на 0,28

Разность давлений наружного и внутреннего воздуха для входных наружных дверей: DPf = 0.55 H (gext-gint) + 0.03 gext n 2 =

$$= 0.55 \cdot 16.25 \cdot (14.135 - 11.9) + 0.03 \cdot 14.135 \cdot 4.9^2 = 30.157$$
 Па (формула (13); прил.Г5).

Количество инфильтрующегося воздуха в здание через ограждающие конструкции: $G_{inf} = (A_F/R_{aF}) (D_{ef}/10) (2/3) + (A_{ed}/R_{aed}) (D_{ed}/10) (0,5) =$ = $(405,4/0,86) \cdot (30,157/10) (2/3) + (58/0,86) \cdot (20,351/10) (0,5) = 1080,17 кг/ч.$

4) Продолжение расчета по прил. Г4

Средняя кратность воздухообмена здания за отопительный период:

$$n_a = ((36630 \text{ n}_V)/168 + (G_{inf} \text{ k} \text{ n}_{inf})/(168 \text{ r}_a \text{ ht}))/(b_V \text{V}_h) =$$

= $((36630 \cdot 168)/168 + (1080,17 \cdot 1 \cdot 0)/(168 \cdot 1,317))/(0,85 \cdot 59697) = 0,722 ч (-1).$

5) Продолжение расчета по прил.Г3

Удельная теплоемкость воздуха: $c = 1 \text{ к} \text{Дж/(кг}^{\circ}\text{C}).$

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

а Взам. инв. №

Инв. № подл.

Условный коэффициент теплопередачи здания:

$$\begin{split} & K_m \; inf = 0.28 \; c \; \; n_a \; \; b_V \; V_h \; \; \; r_a \; ht \; _k \; /A_e \; sum = \\ & = 0.28 \; \cdot \; 1 \; \cdot \; 0.722 \; \cdot \; 0.85 \; \cdot \; 59697 \; \cdot \; 1.317 \; \cdot \; 1/12682 = 1.065 \; \mathrm{BT/(M} \; ^{2\circ}\mathrm{C}). \end{split}$$

Тип конструкций - наружные стены.

По табл. 6:

Коэффициент:

n = 1.

Приведенный коэффициент теплопередачи через наружные ограждающие конструкции здания:

$$K_m^{tr} = (A_W/R_W^{r} + A_F/R_F^{r} + A_{ed}/R_{ed}^{r} + A_c/R_c^{r} + n A_{c1}/R_{c1}^{r} + n A_f/R_f^{r} + A_{f1}/R_{f1}^{r})/A_e^{sum} =$$

$$= (4865/2,53+405,4/0,5+58/0,52+2958/3,81+1 \cdot 318/5,12+1 \cdot 4078/9,4)/12682 = 0,301 \text{ BT/(M } 2^{\circ}\text{C}).$$

Общий коэффициент теплопередачи здания:

$$K_m = K_m tr + K_m inf = 0.301 + 1.065 = 1.366 Br/(M^2 C)$$
.

Общие теплопотери здания:

$$Q_h = 0.0864 \text{ Km} D_d A_e \text{ sum} = 0.086 \cdot 1.366 \cdot 4515.4 \cdot 12682 = 6758470.451 МДж.$$

6) Определение бытовых теплопоступлений в течение отопительного периода

Средняя температура наружного воздуха:

$$t_{ht} = t_{ht}, 8 = -3.1 \, ^{\circ}C.$$

Продолжительность отопительного периода:

$$z_{ht} = z_{ht}$$
, $8 = 214 \text{ cyr.}$

Величина бытовых тепловыделений на 1 м 2 площади:

$$q_{int} = (90 \text{ m/A}_1 + q_{1t} + 10) n_W / 168 =$$

=
$$(90 \cdot 99/6077+30+10) \cdot 48/168 = 11,847 \text{ BT/m}^2$$
.

Бытовые теплопоступления в течение отопительного периода:

Qint =
$$0.0864$$
 qint zht A1 = $0.086 \cdot 11.847 \cdot 214 \cdot 6077 = 1331144.312$ MJж.

7) Определение теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода

Тип светопрозрачных конструкций здания - окна.

8) Определение коэффициента затенения непрозрачными элементами, коэффициента относительного пропускания солнечной радиации окон и балконных дверей

Переплет окон - деревянный или из ПВХ.

Заполнение светового проема - стеклопакет.

Изм.	Кол.уч	Лист	N док.	Подп.	Дата	

Взам. инв. №.

Подпись и дата

Инв. № подл.

Тип стеклопакета - однокамерный.

Остекление - из обычного стекла.

Коэффициент затенения светового проема окон: tf = 0.80 = 0.8.

Коэффициент относительного проникания солнечной радиации окон: $k_f = 0.76$.

Фасады ориентированы - по сторонам света.

Средняя за отопительный период величина солнечной радиации на вертикальной поверхности, ориентированная по фасаду здания 1:

$$I_1 = I_C = 627 \text{ МДж/м}^2$$
.

Средняя за отопительный период величина солнечной радиации на вертикальной поверхности, ориентированная по фасаду здания 2:

$$I_2 = I_B = 855 \text{ МДж/м}^2$$
.

Средняя за отопительный период величина солнечной радиации на вертикальной поверхности, ориентированная по фасаду здания 3:

$$I_3 = I_{\text{HO}} = 1300 \text{ МДж/м}^2.$$

Средняя за отопительный период величина солнечной радиации на вертикальной поверхности, ориентированная по фасаду здания 4:

$$I_4 = I_3 = 862 \text{ МДж/м}^2$$
.

Площадь светопроемов фасадов здания, ориентированная по направлению 1:

$$A_{F1} = A_{F, C} = 143.4 \text{ m}^2.$$

Площадь светопроемов фасадов здания, ориентированная по направлению 2:

$$A_{F2} = A_{F, B} = 28 \text{ m}^2$$
.

Площадь светопроемов фасадов здания, ориентированная по направлению 3:

$$A_{F3} = A_{F, IO} = 191 \text{ m}^2$$
.

Площадь светопроемов фасадов здания, ориентированная по направлению 4:

$$A_{F4} = A_{F, 3} = 43 \text{ m}^2$$
.

Теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода:

$$Q_S = t_f k_f (A_{F1} I_1 + A_{F2} I_2 + A_{F3} I_3 + A_{F4} I_4) =$$

= 0,8 · 0,76 · (143,4 · 627+28 · 855+191 · 1300+43 · 862) = 242724,422 МДж.

9) Продолжение расчета по прил. Г2

Коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций:

$$v = 0.8$$
.

Вид системы отопления - двухтрубная система отопления с термостатами и с центральным авторегулированием на вводе.

Коэффициент эффективности авторегулирования подачи теплоты в системах отопления: z = 0.95.

Тип зданий - здания с отапливаемыми подвалами.

Коэффициент, учитывающий дополнительное теплопотребление системы отопления:

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

 b_h = 1,07. Расход тепловой энергии на отопление здания в течение отопительного периода: Qh y = (Qh-(Qint+Qs) v z) b_h =

= $(6758471 - (1331144 + 242724,4) \cdot 0,8 \cdot 0,95) \cdot 1,07 = 5951694,187$ МДж.

10) Продолжение расчета по прил.Г1

Расчетный удельный расход тепловой энергии на отопление зданий за отопительный период: $q_h des = 10^3 Q_h y/(V_h D_d) =$

= $10^{3} \cdot 5951694/(59697 \cdot 4515,4) = 22,08 кДж/(м <math>^{3}$ °C сут).

11) Продолжение расчета по п. 5.12

Нормируемый удельный расход тепловой энергии на отопление здания принимается по табл. 9 qh $^{\text{req}} = 27 \text{ кДж/(м} \, ^{3} \, ^{\circ}\text{C cyt})$.

١	Бзам								
ı	Подпись и дата								
	Инв. № подл.	-							
- :	Ž۱	F							Лист
	뛰	L							31
	\leq		Изм.	Кол.уч	Лист	N док.	Подп.	Дата	<u> </u>
		_							

ЭНЕРГЕТИЧЕСКИЙ ПАСПОРТ ЗДАНИЯ

Общая информация о проекте

Дата заполнения (число, м-ц, год)	11.11.2013г.
Адрес здания	Московская область, Ленинский район,
	пос. Развилка
Разработчик проекта	
Адрес и телефон разработчика	

№ подл.	Подпись и дата	Взам. инв. №.

ľ	Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Лист

32

Расчетные условия

No	Наименование расчетных параметров	Обозначения	Единица измерения	Величина
1.	Расчетная температура внутреннего воздуха для расчета теплозащиты	t _{int}	°C	18
2.	Расчетная температура внутреннего воздуха для расчета отопления	thint	°C	18
3.	Расчетная температура наружного воздуха для расчета теплозащиты	t _{ext}	°C	-28
4.	Расчетная температура наружного воздуха для расчета отопления	t ext	°C	-28
5.	Продолжительность отопительного периода	Zht	°C	214
6.	Средняя температура наружного воздуха за отопительный период	t _{ht}	°C	-3.1
7.	Градусосутки отопительного периода	Dd	°С.сут	4515

Функциональное назначение, тип и конструктивное решение здания

8.	Назначение	Офисно-складской комплекс.			
9.	Размещение в застройке	Отдельностоящее			
10.	Тип здания	Здания с отапливаемыми подвалами			
11.	Конструктивное решение здания	Конструктивная схема каркасная (см. разделы КЖ и КМ).			

Взам. инв. №.	
Подпись и дата	
Инв. № подл.	

1						
						Лист
						33
Изм	Копуч	Пист	N лок	Полп	Лата	33

Геометрические показатели

No	Показатель	Обозначен	Нормативн	I	II	III
		ие и	oe	этап	этап	Этап
		размерност	значение	проектные	отклонение	Результат
		Ь	показателя	данные	OT	энер.
		показателя	1101101001101111		проектных	обследовани
10	05,000 20,000			12692	решений	я здания
12.	Общая площадь	Ae^{sum} , M^2		12682		
	наружных					
	ограждающих					
	конструкций					
	здания, в.т.ч.					
	- наружных стен	M^2		4865		
	- покрытие	M^2		3276		
	- окон – стекло	Ar, M ²		405.4		
	фас.					
	-ограждений	M^2		4078		
	контактирующи					
	х с грунтом					
	- входных	A _{ed} , M ²		58		
	дверей, ворот					
13.	Площадь отапливаемых	A _h , M ²		7863		
1.4	помещений	Λ2		7972		
14.	Общая площадь	A _k , M ²		7863		
15.	Расчетная площадь	Ar, M ²		6077		
16.	Отапливаемый	Vh, M ³		59697		
	объем					
17.	Коэффциент	P %		7		
	остекленности					
	фасада					
18.	Показатель					
	компактности здания	k_e^{des}		0,17		

Взам. инв. №. Подпись и дата Инв. № подл.

Изм. Кол.уч Лист N док. Подп. Дата Лист

34

Теплоэнергетические показатели

Теплотехнические показатели

No	Показатель	Обозначени е и размерность показателя	Нормати вное значение показате ля	1 этап проектные данные	II этап отклонение от проектных решений	III Этап Результат энер. обследован ия здания
18.	Приведенное сопротивление теплопередаче наружных ограждений	R _o r, м2 ^{оС} /Вт				
	-наружных стен административной части здания	Rw	2.55	4.36		
	-наружных стен складской части здания	R _{w1}	1.9	2.33		
	-наружных стен цокольной части здания	R _{w2}	2.55	3.73		
	-покрытие административной части здания	Rc	3.4	5.12		
	-покрытие складской части здания	R _{c1}	2.62	3.81		
	-ограждения по грунту	R _f r		9.4		
	- окон - стекло фас.	R _F	0.42	0.56		
19.	Приведенный трансмиссионный коэффициент теплопередачи здания	K _m ^{tr} ,Вт/м ^{2o} С		0.301		
20.	Воздухопроницаемост ь наружных ограждений	G _m , кг/(м ² ч)				
	- наружных стен	Gm ^w	1	1		
	- окон и витражей	G _m ^F	5	0,86		
	- покрытий	G _m ^c	1	1		
21.	Кратность воздухообмена	n _a , 1/ч		0.722		
22.	Приведенный (условный)	Km ^{inf} ,		1.065		

Взам. инв. №. Подпись и дата Инв. № подл.

Изм. Кол.уч Лист N док. Подп. Дата

	1										
						_	- 1 200	 1			
			инфи	льтраі Билие	ционныі нт	Ă	Вт/м ² °С				
			тепло	рицис перед	пт (ачи здан	ния					
		23.	Общ	<u>ий</u> к	оэффиц	иент	K _m ,		1.366		
			тепло	оперед	цачи зда	ния	Вт/м ²⁰ С				
							DI/W C				
ું											
Взам. инв. №.											
=											
3aN											
<u> </u>	_										
ام											
Подпись и дата											
ا ف z											
<u> </u>											
[월											
-											
<u></u>	7										
Инв. № подл.											
일											Лист
[포											36
Z	Изм.	Кол.у-	и Лист	N док.	Подп.	Дата					

Энергетические показатели

No	Показатель	Обозначение и размерность показателя	Норматив ное значение показателя	1 этап проектные данные	II этап отклонение от проектных решений	III Этап Результат энер. обследован ия здания
24.	Общие теплопотери через ограждающую оболочку здания за отопительный период	Q _h , МДж		6758470,451		
25.	Удельные бытовые тепловыделения в	q _{int} , Вт/м ²		11,847		
26.	Бытовые теплопоступления в здание за отопительный период	Q _{int} , МДж		1331144,312		
27.	Теплопоступления в здание от солнечной радиации за отопительный период	Q _s , МДж		242724,422		
28.	Потребность в тепловой энергии на отопление здания за отопительный период	Q _h ^y , МДж		5951694,187		
29.	Удельный расход теповой энергии на отопление	q _h des, кДж/(м ^{3o} Ссу т)	27	22.08		
30.	Потребляемая мощность систем	Водоснабжен ие м ³ /сут Отопления		8.5		
	инженерного оборудования	Вт Установленн		699500 324.3		
		ая мощ т.кВт				

Взам. инв. №.	
Подпись и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Лист

37

Коэффициенты

31	Показатель	Обозначение показателя и единицы измерения	Нормативное значение показателя
	Коэффициент эффективности авторегулиро	ζ	0,95
32	вания отопления		
33	Коэффициент, учитывающий снижение теп лопотребления жилых зданий при наличии поквартир ного учета тепловой энергии на отопление	ځ	-
34	Коэффициент эффективности рекуператора	<i>К</i> эф	-
35	Коэффициент, учитывающий снижение ис пользования теплопоступлений в период превышения их над теплопотерями	ν	0,8
36	Коэффициент учета дополнительных тепло потерь системы отопления	βн	1,07

Сопоставление с нормативными требованиями

37.	Требуемый удельный расход тепловой энергии системой	27
	теплоснабжения на отопление здания q _e ^{req} , кДж/)м ³⁰ Ссут)	
38.	Соответствует ли проект здания нормативному требованию	Да
39.	Класс энергетической эффективности	В(высокий)
40.	Дорабатывать ли проект здания?	нет

Рекомендации по повышению энергетической эффективности

регулирование электрического освещения путём использования сенсоров освещенности помещений (для учёта погодных условий и времени суток);	41	Рекомендуем:	помещений (для учёта погодных условий и
--	----	--------------	---

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

Взам. инв. №.

Подпись и дата

Инв. № подл.

Лист

38

		Использовать автоматическое и выключение электрического освещения за счёт использования датчиков присутствия людей в помещениях (особенно во вспомогательных, складских и т.п. помещениях);
		Покраска стен и полов отражающей краской, для более эффективного использования естественного освещения;
		Установка отражающих поверхностей в плафонах ламп
		Закрытие неиспользуемых помещений с отключением отопления
		Обеспечение выключения электроприборов из сети при их неиспользовании (вместо перевода в режим ожидания)
42	Паспорт заполнен	11.11.2013
43	Организация	ООО «Рус Мастер»

Взам. инв. №.	
Подпись и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	N док.	Подп.	Дата

8. ЗАКЛЮЧЕНИЕ

- 8.1 Обоснование выбора принятых архитектурных, функционально технических, конструктивных и инженерно технических решений:
- 8.1.1 Утепление наружных стен, перекрытий эффективным утеплителем, применение энергоэффективных стеклопакетов и эффективной системы отопления позволяют по результатам расчетов присвоить зданию класс энергетической эффективности В(высокий).
- 8.1.2 Показатель остекленности фасада укладывается в нормативный показатель Сни Π 23-02 п.5.11. и равен: A_F/A_{w+F} , p=7%.
 - 8.1.3 Нормы воздухопроницамости удовлетворенны.
- **8.2** Требования энергетической эффективности, которым здание должно соответствовать при вводе в эксплуатацию:
- 8.2.1 Вводимое в эксплуатацию здание должно соответствовать присвоенному на стадии проектирования класса энергетической эффективности В
 - 8.2.2 Здание должно быть оборудовано:
- а) Термостатами и измерителями расхода потребляемой тепловой энергии, установленными на отопительных приборах вертикальных систем отопления.
- б) Регуляторами давления воды в системах холодного и горячего водоснабжения на вводе в здание.
- г) Энергосберегающими осветительными приборами в местах общего пользования;
- д) Оборудованием, обеспечивающим выключение освещения при отсутствии людей в местах общего пользования (датчики движения, выключатели)
 - е) Дверными доводчиками
- ж) Второй дверью в тамбурах входных групп, обеспечивающей минимальные потери тепловой энергии, или вращающимися дверями
 - 3) Ограничителями открывания окон

Инв. № подл. Подпись и дата Взам. инв. №

Изм. Кол.уч Лист N док. Подп. Дата